Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2007.\frac{1}{90}\)
\(\Leftrightarrow\)\(\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{223}{10}\)
\(\Leftrightarrow\)\(1+\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}=\frac{223}{10}\)
\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{193}{10}\)
Vậy \(S=\frac{193}{10}\)
Chúc bạn học tốt ~
Cách 1: Nhân cả hai vế của đẳng thức cho \(a+b+c\)ta được:
\(\frac{a+b+c}{a+b}=\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{90}\)
\(\Rightarrow a+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{a+c}=\frac{2007}{90}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2007}{90}-3=22,3-3=19,3\)
Ta có :
\(A+3=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\)
\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)
\(=2017.\frac{1}{2017}=1\)
\(\Rightarrow A=1-3=-2\)
a/
\(x-y=\frac{a}{b}-\frac{c}{d}=\frac{ad-cb}{bd}=\frac{1}{bd}.\) (1)
\(y-z=\frac{c}{d}-\frac{e}{h}=\frac{ch-de}{dh}=\frac{1}{dh}\)(2)
+ Nếu d>0 => (1)>0 và (2)>0 => x>y; y>x => x>y>z
+ Nếu d<0 => (1)<0 và (2)<0 => x<y; y<z => x<y<z
b/
\(m-y=\frac{a+e}{b+h}-\frac{c}{d}=\frac{ad+de-cb-ch}{d\left(b+h\right)}=\frac{\left(ad-cb\right)-\left(ch-de\right)}{d\left(b+h\right)}=\frac{1-1}{d\left(b+h\right)}=0\)
=> m=y
+
cảm ơn bn nha Nguyễn Ngoc Anh Minh mk k cho bn r đó kb vs mk nha
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\left(k\in R\right)\)
\(\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)
Thay vào A ta được \(A=\frac{2k-5k+7k}{2k+2\cdot5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
Vậy A=\(\frac{4}{5}\)
Đặt a/2 = b/5 = c/7 = k => a = 2k
b = 5k
c = 7k
=> a - b + c / a + 2b - c = 2k - 5k + 7k / 2k + 2 * 5k - 7k = 4k / 5k = 4/5
Vậy A = 4/5
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c.\)
\(\Rightarrow M=\frac{a^{2013}b^2c}{c^{2016}}=\frac{c^{2013+2}}{c^{2016}}=\frac{c^{2016}}{c^{2016}}=1\)
a/b=b/c=c/a
Áp dụng t/c dãy tỉ số bằng nhau ta có :
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b =b/c=c/a=1 suy ra a=b=c
suy ra M =1
Gấp gáp chi em cuộc sống vẫn rực rỡ sắc màu
Chim vẫn reo ca và môi hôn đang đứng đợi
Hoa vẫn nở và xuân thì đương tới
Hãy trải lòng xao xuyến với tình yêu.
Ta có :
\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\)\(M>1\) \(\left(1\right)\)
Lại có :
\(\frac{a}{b+c}< \frac{a+a}{a+b+c}\)
\(\frac{b}{c+a}< \frac{b+b}{a+b+c}\)
\(\frac{c}{a+b}< \frac{c+c}{a+b+c}\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{a+a}{a+b+c}+\frac{b+b}{a+b+c}+\frac{c+c}{a+b+c}=\frac{a+a+b+b+c+c}{a+b+c}=2\)
\(\Rightarrow\)\(M< 2\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(1< M< 2\)
Vậy \(M\) có giá trị không là số nguyên
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a} = \frac{a+b+c}{b+c+a}=1\) (tính chất của dãy tỉ số bằng nhau)
=> a=b=c
chúc bn học giỏi
ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow a=b=c\)