\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

theo bài ra ta có

\(\frac{a^{2015}}{b^{2017}+c^{2019}}=\frac{b^{2017}}{a^{2015}+c^{2019}}=\frac{c^{2019}}{a^{2015}+b^{2017}}\)

=>\(\frac{a^{2015}}{b^{2017}+c^{2019}}+1=\frac{b^{2017}}{a^{2015}+c^{2019}}+1=\frac{c^{2019}}{a^{2015}+b^{2017}}+1\)

=> \(\frac{a^{2015}+b^{2017}+c^{2019}}{b^{2017}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+b^{2017}}\)

  • nếu a2015+ b2017 +c2019 = 0

=> b2017+ c2019 = -(a2015) (1)

=> a2015+ c2019= -(b2017) (2)

=> a2015+ b2017= -(c2019) (3)

thay 1, 2, 3 vào S ta có:

S = \(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}\)

=> S =\(\frac{-\left(a^{2015}\right)}{a^{2015}}+\frac{-\left(b^{2017}\right)}{b^{2017}}+\frac{-\left(c^{2019}\right)}{c^{2019}}\)

S = -1 + -1 + -1

S = -3

vậy S ko phụ thuộc vào giá trị a,b,c

  • nếu a2015+b2017+c2019 khác 0

=> b2017+c2019 = a2015+c2019=a2015+b2017

=> b2017 = a2015 = c2019

=>S=\(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}=\frac{2a^{2015}}{a^{2015}}+\frac{2b^{2017}}{b^{2017}}+\frac{2c^{2019}}{c^{2019}}=2+2+2=6\)

VẬY S ko phụ thuộc vào các giá trị của a,b,c

từ 2 trường hợp trên => giá trị của biểu thức S ko phụ thuộc vào giá trị của a,b,c (đpcm)

26 tháng 11 2016

thanks you :)

23 tháng 9 2018

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\). Áp dụng tính chất tỉ dãy số bằng nhau. Ta có:

\(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)

Mặt khác: \(\left(\frac{a-b}{c-d}\right)^{2015}=\frac{\left(a-b\right)^{2015}}{\left(c-d\right)^{2015}}\ne\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)

Do vậy không thể chứng minh được đề bài. Suy ra: Đề sai!!!!

23 tháng 9 2018

Do một số bạn phản ánh về lời giải của mình nên mình quyết định giải lại nhằm bảo vệ danh dự của mình =)))

 Giải

Theo giả thiết, áp dụng tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Theo t/c dãy tỉ số bằng nhau ,ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\left(\frac{a-b}{c-d}\right)^{2015}\) (1)

Mặt khác, áp dụng tính chất dãy tỉ số bằng nhau lần nữa ta có: \(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\) (2)

Từ (1) và (2) ta có: \(\hept{\begin{cases}\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\\\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}=\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\end{cases}\Leftrightarrow\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}^{\left(đpcm\right)}}\)

15 tháng 12 2018

Bài này easy! C/m a=b=c xong là ra rồi!

 \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

Thay vào,ta có: \(\frac{a^{2010}.c^5}{b^{2015}}=\frac{a^{2010}.a^5}{a^{2015}}=\frac{a^{2015}}{a^{2015}}=1\) (do a = b = c,ta thay b và c bởi a)

31 tháng 10 2016

bài gì khó thế!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

bí bí bí

18 tháng 10 2017

Ta có \(a=\frac{2015b}{2016};c=\frac{2017b}{2016}\)

\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)

   \(=4\left(\frac{2015b}{2016}-b\right)\left(b-\frac{2017b}{2016}\right)-\left(\frac{2017b}{2016}-\frac{2015b}{2016}\right)^2\)

   \(=4\left(-\frac{1b}{2016}\right)\left(-\frac{1b}{2016}\right)-\left(\frac{2b}{2016}\right)^2\)

    \(=2^2\left(\frac{1b}{2016}\right)^2-\left(\frac{2b}{2016}\right)^2=\left(\frac{2b}{2016}\right)^2-\left(\frac{2b}{2016}\right)^2=0\)

18 tháng 10 2017

thay a=b=c=0 vào B ta được B=0 vậy ta sẽ chứng minh B=0

Đặt \(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}=k\)

suy ra

\(\hept{\begin{cases}a=2015k\\b=2016k\\c=2017k\end{cases}}\)

vậy

\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)

\(B=4\left(2015k-2016k\right)\left(2016k-2017k\right)-\left(2017k-2015k\right)^2\)

\(B=4\left(-k\right)\left(-k\right)-\left(2k\right)^2\)

\(B=4k^2-4k^2\)

\(B=0\)