\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\), a + b + c khác 0; a = 2003. Tính b,c.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

theo bài ra ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b

b = c

c = a

=> a = b =c

mà a = 2003 => b = c = 2003

vậy b = 2003, c = 2003

25 tháng 12 2016

Cảm ơn bạn!!!

13 tháng 7 2017

a, Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c 

b, Áp dung TCDTSBN ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y = z

Vậy \(\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c, ac = b2 => \(\frac{a}{b}=\frac{b}{c}\left(1\right)\)

ab = c2 => \(\frac{b}{c}=\frac{c}{a}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c

Vậy \(\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

13 tháng 7 2017

a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Vậy a = b ; a = c ; c = a => a=b=c

b, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y; y = z; z = x => x = y = z

\(\Rightarrow\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{333+666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c,

Theo đề bài:

ac = bb <=> bb/a = c

ab = cc <=> ab/c = c

=> bb/a = ab/c

=> bbc = aab 

=> bc = ab

Mà cc = ab => cc = bc => b = c

ac/b = b

cc/a = b

=> ac/b = cc/a

=> aac = bcc

=> aa = bc

Mà bc = cc => aa = cc => a = c

=> a = b = c

\(\Rightarrow\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

17 tháng 11 2016

nhanh nhanh nhayeu

17 tháng 11 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Ta có: \(1:\frac{b+c}{a}=1:2\)

\(\Rightarrow\frac{a+b}{c}=\frac{1}{2}\)

\(A=\frac{a}{b+c}+\frac{a+b}{c}\)

\(\Rightarrow A=2+\frac{1}{2}\)

\(\Rightarrow A=\frac{5}{2}\)

Vậy \(A=\frac{5}{2}\)

 

28 tháng 11 2019

Câu hỏi của Đoàn Thị Như Thảo - Toán lớp 7 - Học toán với OnlineMath

7 tháng 12 2018

Ta có:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\Leftrightarrow\)

\(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{b+c+a+c+a+b}{a+b+c}=2\)

\(\Rightarrow P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=3.2=6\)

7 tháng 12 2018

bài này có 2 trường hợp nhé =))

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\Rightarrow1+\frac{a}{b+c}=1+\frac{b}{a+c}=1+\frac{c}{a+b}\)

\(\Rightarrow\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

\(TH1:a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}b+c=-a\\a+c=-b\\a+b=-c\end{cases}\Rightarrow P=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-3}\)

\(TH2:a+b+c\ne0\)

\(\Rightarrow\hept{\begin{cases}b+c=a+c\Rightarrow a=b\\a+c=a+b\Rightarrow c=b\\a+b=b+c\Rightarrow a=c\end{cases}\Rightarrow a=b=c}\)

\(\Rightarrow P=\frac{a+a}{a}+\frac{b+b}{b}+\frac{c+c}{c}=2.3=6\)

Vậy P=-3 hay P=6

21 tháng 9 2018

Easy mà sao còn phải hỏi? Kiến thức cơ bản của sgk đủ giải rồi! =))

1)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{2003+b+c}{b+c+2003}=1\Rightarrow a=b=c=2003\)

2) Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)

Từ đó suy ra: \(\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\) (do a = b =c nên ta thế a, c = b)

Đó đó: \(M=\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=1\)

26 tháng 11 2017

Do \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\\ \)

=> \(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=\frac{a+b+c+a+b+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

=> \(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}=2+2+2=6\)