\(\frac{ab}{a+b}=\frac{bc}{b+c}\) (ab và bc là số có 2 chữ số). Chứng minh : 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Rightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\Rightarrow\left(10a+b\right)\left(b+c\right)=\left(10b+c\right)\left(a+b\right)\)

\(\Rightarrow10ab+b^2+10ac+bc=10ab+ac+10b^2+bc\Rightarrow9b^2=9ac\Rightarrow b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right)\)

30 tháng 5 2020

Ta có : \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)

\(\Rightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

\(\Rightarrow\frac{9a}{a+b}=\frac{9b}{b+c}\Rightarrow\frac{a}{a+b}=\frac{b}{b+c}\)

=> a(b + c) = b(a + b)

=> ab + ac = ab + bb

=> ac = bb

=> \(\frac{a}{b}=\frac{b}{c}\left(\text{đpcm}\right)\)

21 tháng 10 2016

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)

=> a = b = c (đpcm)

 

 

 

 

 

21 tháng 10 2016

soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó

7 tháng 1 2020

Từ \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Rightarrow\left(10a+b\right).\left(b+c\right)=\left(10b+c\right).\left(a+b\right)\)

\(\Rightarrow10ab+b^2+10ac+bc=10ab+ac+10b^2+bc\)

\(\Rightarrow b^2+10ac=ac+10b^2\)

\(\Rightarrow10ac-ac=10b^2-b^2\)

\(\Rightarrow9ac=9b^2\)

\(\Rightarrow ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right)\)

7 tháng 1 2020

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)

<=> \(\frac{\overline{ab}}{\overline{bc}}=\frac{a+b}{b+c}\)

<=> \(\frac{a.10+b}{b.10+c}=\frac{a+b}{b+c}\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{a.10+b}{b.10+c}=\frac{a+b}{b+c}=\frac{\left(10a+b\right)-\left(a+b\right)}{\left(10b+c\right)-\left(b+c\right)}=\frac{9a}{9b}=\frac{a}{b}\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{b+c}=\frac{a}{b}=\frac{\left(a+b\right)-a}{\left(b+c\right)-b}=\frac{b}{c}\)

=> \(\frac{a}{b}=\frac{b}{c}\)

AH
Akai Haruma
Giáo viên
20 tháng 5 2020

Bài 2 sau khi đã sửa đề thành $5x=7z$:

Ta có:
\(\frac{x}{y}=\frac{3}{2}\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{21}=\frac{y}{14}(1)\)

\(5x=7z\Leftrightarrow \frac{x}{7}=\frac{z}{5}\Leftrightarrow \frac{x}{21}=\frac{z}{15}(2)\)

Từ $(1);(2)\Rightarrow \frac{x}{21}=\frac{y}{14}=\frac{z}{15}$ và đặt bằng $k$

$\Rightarrow x=21k; y=14k; z=15k$

Khi đó:

$x-2y+z=32$

$\Leftrightarrow 21k-28k+15k=32\Leftrightarrow 8k=32\Rightarrow k=4$

$\Rightarrow x=21k=84; y=14k=56; z=15k=60$

AH
Akai Haruma
Giáo viên
19 tháng 5 2020

Bài 2: $5z=7z$ hình như sai, bạn coi lại đề.

Bài 3:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Leftrightarrow \frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

\(\Leftrightarrow \frac{9a+(a+b)}{a+b}=\frac{9b+(b+c)}{b+c}\Leftrightarrow \frac{9a}{a+b}+1=\frac{9b}{b+c}+1\)

\(\Leftrightarrow \frac{a}{a+b}=\frac{b}{b+c}\Rightarrow ab+ac=ab+b^2\)

\(\Leftrightarrow ac=b^2\Rightarrow \frac{a}{b}=\frac{b}{c}\) (đpcm)

18 tháng 11 2018

Có \(\frac{a}{b}=\frac{b}{c}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=c.k;b=d.k\)

\(\Rightarrow a^2=c^2.k^2;b^2=d^2.k^2\)

Khi đó \(\frac{a^2+c^2}{b^2+d^2}=\frac{c^2.k^2+c^2}{d^2.k^2+d^2}=\frac{c^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{c^2}{d^2}=\frac{a^2}{b^2}\)

18 tháng 11 2018

Dekisugi Hidetoshi làm hài v:

\(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}=\frac{a}{c}\)

=> đpcm

p/s: b lấy "d" ở đâu ra vậy :V

-----đã làm sai còn s ủa---