Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)
\(VT=\frac{a^2+ac}{c^2-ac}=\frac{\left(bk\right)^2+bkdk}{\left(dk\right)^2-bkdk}=\frac{b^2k^2+bdk^2}{d^2k^2-bdk^2}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2-bd\right)}=\frac{b^2+bd}{d^2-bd}=VP\)
=>Đpcm
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{a^2+ac}{c^2-ac}=\frac{\left(bk\right)^2+bkdk}{\left(dk\right)^2-bkdk}=\frac{b^2.k^2+b.d.k^2}{d^2.k^2-b.d.k^2}=\frac{b.k^2\left(b+d\right)}{d.k^2\left(d-b\right)}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\) (1)
\(\frac{b^2+bd}{d^2-bd}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\) (2)
Từ (1) và (2) suy ra \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\) ( đpcm )
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=\frac{c}{d}.\frac{c}{d}\Leftrightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Đặt a/b=c/d=k=> a=kb: c=kd
Có ac/bd=kb.kd/b.d= k^2(b.d)/b.d=k^2 *1
a^2+c^2/b^2+c^2=(kb)^2+/b^2+d^2=k^2.(b^2.d^2)/b^2.d^2=k^2 *2
*1+*2 => ac/bd=a^2+c^2/b^2+d^2
*** mình / có nghĩa là phân số nha!
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.Đặt:a=ck;b=dk\)
\(\Rightarrow\frac{a^2+ac}{c^2-ac}=\frac{c^2k^2+c^2k}{c^2-kc^2}=\frac{c^2\left(k^2+k\right)}{c^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)
\(\frac{b^2+bd}{d^2-bd}=\frac{d^2k^2+kd^2}{d^2-kd^2}=\frac{d^2\left(k^2+k\right)}{d^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)
\(\Rightarrow\frac{b^2+bd}{d^2-bd}=\frac{a^2+ac}{c^2-ac}\left(\text{đpcm}\right)\)
Ta có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)
\(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\Leftrightarrow ad\left(a+c\right)\left(d-b\right)=bc\left(b+d\right)\left(c-a\right)\)
Rút gọn ad với bc \(\Rightarrow\left(a+c\right)\left(d-b\right)=\left(b+d\right)\left(c-a\right)\)
\(\Leftrightarrow ad+cd-ab-bc=bc+cd-ab-ad\)
Rút gọn 2 vế ta đc 0=0
vì 0=0 luôn đúng nên cái phương trình trên luôn đúng
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
Đặt \(\frac{a}{b}=k\Rightarrow b=k.b\)
\(\frac{c}{d}=k\Rightarrow c=k.d\)
Ta có : \(\frac{ac}{bd}=\frac{k^2.bd}{bd}=k^2\) (1)
\(\frac{d^2-c^2}{b^2-d^2}=\frac{kb^2-kd^2}{b^2+d^2}\)
\(=\frac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\) (2)
Từ (1) và (2) => đpcm
Làm lại :
Đặt : \(\frac{a}{b}=k\) => b=k.b
\(\frac{c}{d}=k\) => c = k.d
Ta có : \(\frac{ac}{bd}=\frac{k^2.bd}{bd}=\frac{k^2.1}{1}=k^2\) (1)
\(\frac{d^2-c^2}{b^2-d^2}=\frac{kb^2-kd^2}{b^2-d^2}\)
\(=\left(\frac{k\left(b-d\right)}{b-d}\right)^2\)
\(=\frac{k^2\left(b^2-d^2\right)}{b^2-d^2}=\frac{k^2.1}{1}=k^2\) (2)
Từ (1) và (2) => đpcm
a)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(T/C...)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)
b)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)(T/C...)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
c)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{7a^2}{7c^2}=\frac{11a^2}{11c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}\)
\(\Rightarrow\frac{7a^2}{7c^2}=\frac{11a^2}{11c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}=\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\)
\(\Rightarrow\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)
Có:a2/b2=c2/d2=ac/bd=>a2+ac/b2+bd=c2-ac/b2-bd=>a2+ac/c2-ac=b2+bd/d2-bd
đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
ta có \(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2\cdot k^2+d^2\cdot k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)
suy ra đpcm