\(\frac{a+b-c}{c}=\frac{b+c-a}{a}\)\(=\frac{c+a-b}{b}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

Ok , mình sẽ làm !

Ta có :

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b}{c}-1+1=\frac{b+c}{a}-1+1=\frac{c+a}{b}-1+1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\left(1\right)\)

+) Trường hợp 1 : \(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

Ta có :

 \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{-a}{a}.\frac{-c}{c}.\frac{-b}{b}\)

\(\Leftrightarrow P=-1.\left(-1\right).\left(-1\right)=-1\)

+) Trường hợp 2 : \(a+b+c\ne0\)

Áp dụng tính chất của dãy tỉ số bằng nhau cho ( 1 ) , ta có :

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

Ta lại có :

 \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)

\(\Leftrightarrow P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{c+b}{b}\)

\(\Leftrightarrow P=2.2.2=8\)

Vậy....................

3 tháng 11 2019

Đề sai nhé bạn ! Bạn kiểm tra lại!

15 tháng 12 2019

\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}\)

Ta có: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b}{c}-1=\frac{b+c}{a}-1=\frac{c+a}{b}-1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}\)

TH1: \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow P=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{a.b.c}=-1\)

TH2: \(a+b+c\ne0\)\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=2\)

\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)\(\Rightarrow P=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy \(P=-1\)hoặc \(P=8\)

12 tháng 10 2017

a) Sử dụng phương pháp dãy tỉ số bằng nhau

=> \(\frac{a+b-c}{c}\)\(\frac{b+c-a}{a}\)=\(\frac{c+a-b}{b}\)=\(\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1

=>a+b=2c , b+c=2a , c+a=2b (*)

b)P=(1+\(\frac{b}{a}\))(1+\(\frac{c}{b}\))(1+\(\frac{a}{c}\))=1+ (\(\frac{b}{a}\)+\(\frac{c}{b}+\frac{a}{c}\)) + \(\frac{abc}{abc}\)+(\(\frac{c}{a}+\frac{a}{b}+\frac{b}{c}\))        (Tách ra )

     =\(\frac{\left(b+c\right)bc+\left(c+a\right)ca+\left(a+b\right)ab}{abc}\)+  2  = \(\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{abc}-\frac{3abc}{abc}\)+ 2

     =\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc}{abc}-1\)

Từ (*) =>P=\(\frac{8abc+abc}{abc}\)- 1 =8

15 tháng 10 2016

ket qua la dech biet ma tra loi

4 tháng 11 2016

d ở đâu vậy bạn

4 tháng 11 2016

chị mik ghi nhầm nick đó hihi

22 tháng 4 2019

bạn vào câu hỏi tương tự là có

22 tháng 4 2019

mày điên

18 tháng 7 2017

Áp dụng t/c dãy tỉ số = nhau

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) 

\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\) 

Tương tự \(b+c=2a;;c+a=2b\) 

\(\Rightarrow D=\left(\frac{a+b}{a}\right)\left(\frac{b+c}{b}\right)\left(\frac{c+a}{c}\right)=\left(\frac{2c}{a}\right)\left(\frac{2a}{b}\right)\left(\frac{2b}{c}\right)=8\)

18 tháng 7 2017

Theo đề ta có :

\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{a+c-b}{b}+2\)

\(\Rightarrow\frac{a+b-c+2c}{c}=\frac{b+c-a+2a}{a}=\frac{a+c-b+2b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow\left(a+b+c\right).\frac{1}{c}=\left(a+b+c\right)\frac{1}{c}=\left(a+b+c\right)\frac{1}{b}\)

(vì  \(a\ne b\ne c\ne0\) \(\frac{\Rightarrow1}{a}\ne\frac{1}{b}\ne\frac{1}{c}\ne0\) \(\Rightarrow a+b+c=0\))

* a+b+c=0

=>a+b=-c ; b+c=-a ; a+c =-b

\(D=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\)

\(=\frac{a+b}{a}.\frac{b+c}{b}.\frac{a+c}{c}=\frac{-c.-a.-b}{a.b.c}=\frac{-1.\left(a.b.c\right)}{a.b.c}=-1\)

Vậy : D=-1

12 tháng 7 2019

  Ta có : a³ + b³ + c³ = 3abc 
<=> (a + b + c)(a² + b² + c² - ab - bc - ca) = 0 
Hoặc a + b + c = 0 
Hoặc (a² + b² + c² - ab - bc - ca) = 0 
TH1: a + b + c = 0 => a = -(b + c); b = -( a + c); c = -( a + b) 
=> A = [1 - (b +c)/b][1 - (a + c)/c] [1 - (a + b)/a] 
=> A =[1 - 1 - c/b] [1 - 1 - a/c] [1 - 1 - b/a] 
=> A = (-c/b)(-a/c)(-b/a) = -1 
TH2: (a² + b² + c² - ab - bc - ca) = 0 <=> (a - b)² +(b - c)² + (c - a)² = 0 
=> a - b = b - c = c - a = 0 hay a = b = c 
=> A = (1 + 1)(1 + 1)(1+ 1) = 8