\(\frac{a}{3}=\frac{3}{b}=\frac{b}{a}\). Chứng minh răng:a=b           (với a+b
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

\(\frac{a}{3}=\frac{3}{b}=\frac{b}{a}=\frac{a+3+b}{3+b+a}=1.\)

\(\Rightarrow\frac{a}{3}=1\Rightarrow a=3\)

\(\Rightarrow\frac{3}{b}=1\Rightarrow b=3\)

\(\Rightarrow a=b=3\)

11 tháng 8 2018

a) Áp dụng TC của dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a-2c+3e}{b-2d+3f}\left(đpcm\right)\)

11 tháng 8 2018

 a, Ta có

\(\frac{c}{d}=\frac{2c}{2d};\frac{e}{f}=\frac{3e}{3f}\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}=\frac{3e}{3f}=\frac{a-2c+3e}{b-2d+3f}\)( t/c dãy tỉ số bằng nhau )

b, \(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}\)( t/c dãy tỉ số bằng nhau )

\(\Rightarrow\frac{a}{b}=\frac{a+c+e}{b+d+f}\)

\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+c+e}{b+d+f}\right)^3\)

1 tháng 11 2018

o biết tui còn ôn thi

1 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có: 

      \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^3=\left(\frac{a+b}{c+d}\right)^3\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}\)

\(\frac{a^3}{c^3}=\frac{b^3}{d^3^.}=\frac{a^3-b^3}{c^3-d^3}\)

Vậy \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)

1 tháng 8 2015

theo TCDTSBN ta có

\(\frac{a}{3}=\frac{3}{b}=\frac{b}{a}=\frac{a+3+b}{3+b+a}=1\)

b/a =1 suy ra a=b

12 tháng 7 2017

giúp mình bài này với

so sánh bằng cách nhanh nhất

a 2013 phần 2012 và 13 phần 12

b 15 phần 46 và 21 phần 62

28 tháng 10 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(=>\hept{\begin{cases}a=b.k\\c=d.k\end{cases}}\)

\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{b.k-b}{d.k-d}\right)^2=\left(\frac{b.\left(k-1\right)}{d.\left(k-1\right)}\right)^2\)\(=\frac{\left(b^2.\left(k-1\right)^2\right)}{\left(d^2.\left(k-1\right)^2\right)}=\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}=\frac{b^2}{d^2}\)\(\left(1\right)\)

\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) => \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)

28 tháng 10 2017

Đặt \(\frac{a}{b}\)\(\frac{c}{d}\)= k  => a= bk ; c = dk 
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) = \(\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)\(\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}\)\(\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}\)\(\frac{bk.b}{dk.d}\)\(\frac{b^2}{d^2}\) (2)

Từ (1) và (2) ->> \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) = \(\frac{ab}{cd}\) 

9 tháng 2 2020

\(a^2+ab+\frac{b^2}{3}=c^2+\frac{b^2}{3}+a^2+ac+c^2\left(=25\right)\)

\(\Rightarrow a^2+ab+\frac{b^2}{3}=2c^2+\frac{b^2}{3}+a^2+ac\\ \Rightarrow ab=2c^2+ac\\ \Rightarrow ab+ac=2c^2+2ac\\ \Rightarrow a\left(b+c\right)=2c\left(a+c\right)\\ \Rightarrow\frac{2c}{a}=\frac{b+c}{a+c}\)