\(\frac{a}{2}\)\(=\frac{b}{5}\)\(=\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt  \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\), ta được \(a=2k;b=5k;c=7k\)Ta có:

\(\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{2k+10k-7k}=\frac{4k}{5k}=\frac{4}{5}\)

\(\Rightarrow A=\frac{4}{5}\)

1 tháng 2 2017

Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)

=> a = 2k ; b = 5k ; c = 7k . Thay vào A ta được :

\(A=\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{k\left(2-5+7\right)}{k\left(2+2.5-7\right)}=\frac{2-5+7}{2+2.5-7}=\frac{4}{5}\)

19 tháng 8 2020

a. Vì A thuộc Z 

\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )

b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)

Vì B thuộc Z nên 5 / x - 3 thuộc Z

\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )

c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)

\(=x-2-\frac{2}{x+1}\)

Vi C thuộc Z nên 2 / x + 1 thuộc Z

\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )

4 tháng 3 2018

Ta có : 

\(A=1+5+5^2+...+5^{32}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{30}+5^{31}+5^{32}\right)\)

\(A=31+5^3\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)\)

\(A=31+31.5^3+...+31.5^{30}\)

\(A=31\left(1+5^3+...+5^{30}\right)\) chia hết cho 31 

Vậy \(A\) chia hết cho 31

4 tháng 3 2018

\(a)\) Ta có : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow\)\(ab+ac< ab+bc\)

\(\Leftrightarrow\)\(ac< bc\)

\(\Leftrightarrow\)\(a< b\)

Mà \(a< b\) \(\Rightarrow\) \(\frac{a}{b}< 1\)

Vậy ...

9 tháng 5 2020

Mình làm có đúng ko ạ, nếu đúng thì hãy tick cho mình nhé mọi người

24 tháng 5 2020

thank you bạn nhiều

19 tháng 7 2016

Ta có : \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2015.5\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}+\frac{a+c}{c+a}+\frac{b+c}{b+c}=2015.5\)

\(\Leftrightarrow Q+3=2015.5\Rightarrow Q=2015.5-3=10072\)

29 tháng 4 2017

Ta có : \(\frac{a}{b}=\frac{15}{21}=\frac{135}{189}\) 

\(\frac{b}{c}=\frac{9}{12}=\frac{3}{4}=\frac{21}{28}=\frac{189}{252}\) 

\(\frac{c}{d}=\frac{9}{11}=\frac{252}{308}\) 

\(\Rightarrow a=135\)

\(b=189\)

\(c=252\)

\(d=308\)

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)                     B = \(\frac{5}{1.3}\)+ \(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C...
Đọc tiếp

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)

                     B = \(\frac{5}{1.3}\)\(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)

2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)

3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:

a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C = \(\frac{2x+1}{x-3}\)

4. Cho S =\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+ ... +\(\frac{1}{10^2}\). Chứng minh rằng \(\frac{9}{10}\)< S < \(\frac{9}{22}\)

5. Tìm số nguyên \(n\)để biểu thức \(A=\frac{n+1}{n+5}\)đạt 

a) Giá trị lớn nhất?

b) Giá trị nhỏ nhất?

6. Tìm số nguyên \(x\),\(y\)biết:

a) \(\frac{x}{2}\)\(\frac{2}{y}\)\(\frac{1}{2}\)

b) \(\frac{3}{x}\)\(\frac{y}{3}\)+\(=\frac{5}{6}\)

9
8 tháng 4 2021

1)

A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)

A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)

A = \(\frac{1}{1}-\frac{1}{101}\)

A = \(\frac{100}{101}\)

Vậy A = \(\frac{100}{101}\)

B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}.\frac{100}{101}\)

B = \(\frac{250}{101}\)

Vậy B = \(\frac{250}{101}\)

8 tháng 4 2021

2) 

Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)

\(\Rightarrow d=1\)

Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản

Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ...

11 tháng 4 2021

Lời giải

Giải bài 77 trang 39 SGK Toán 6 Tập 2 | Giải toán lớp 6

Giải bài 77 trang 39 SGK Toán 6 Tập 2 | Giải toán lớp 6

Giải bài 77 trang 39 SGK Toán 6 Tập 2 | Giải toán lớp 6

Giải bài 77 trang 39 SGK Toán 6 Tập 2 | Giải toán lớp 6

Giải bài 77 trang 39 SGK Toán 6 Tập 2 | Giải toán lớp 6

18 tháng 4 2021

A = -4/5x(1/2+1/3+1/4)= -4/5x1 = -4/5
B = 6/19 x ( 3/4+4/3+-1/2)= 6/19x 19 = 6
C = 2002/2003x(3/4+5/6-19/12)=2003/2002x0=0

a=1135/23-((167/32+330/23)

a=1135/23-14401/736

a=953/32

15 tháng 8 2020

Bài đây tính nhanh nhé ミ★ʟuғғʏ☆мũ☆ʀơм★彡 chứ không phải quy đồng lên đâu :)

a) \(A=49\frac{8}{23}-\left(5\frac{7}{32}+14\frac{8}{23}\right)\)

\(A=49\frac{8}{23}-5\frac{7}{32}-14\frac{8}{23}\)

\(A=\left(49\frac{8}{23}-14\frac{8}{23}\right)-5\frac{7}{32}=35-5\frac{7}{32}=35-\frac{167}{32}=\frac{953}{32}\)

b) \(B=\frac{-3}{7}\cdot\frac{5}{9}+\frac{4}{9}:\frac{-7}{3}+2\frac{3}{7}\)

\(B=\frac{-3}{7}\cdot\frac{5}{9}+\frac{4}{9}\cdot\frac{-3}{7}+2\frac{3}{7}\)

\(B=\frac{-3}{7}\left(\frac{5}{9}+\frac{4}{9}\right)+2\frac{3}{7}\)

\(B=\frac{-3}{7}+\frac{17}{7}=\frac{14}{7}=2\)

c) \(C=\left(19\frac{5}{8}:\frac{7}{12}-13\frac{1}{4}:\frac{7}{12}\right)\cdot\frac{4}{5}\)

\(C=\left[\left(19\frac{5}{8}-13\frac{1}{4}\right):\frac{7}{12}\right]\cdot\frac{4}{5}\)

\(C=\left[\left(19\frac{5}{8}-13\frac{2}{8}\right):\frac{7}{12}\right]\cdot\frac{4}{5}\)

\(C=6\frac{3}{8}\cdot\frac{4}{5}=\frac{51}{8}\cdot\frac{4}{5}=\frac{51}{2}\cdot\frac{1}{5}=\frac{51}{10}\)

d) \(D=\frac{54\cdot107-53}{53\cdot107+54}=\frac{\left(53+1\right)\cdot107-53}{53\cdot107+54}=\frac{53\cdot107+107-53}{53\cdot107+54}=\frac{53\cdot107+54}{53\cdot107+54}=1\)