Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(a-\frac{6}{a+1}\right)+\left(2b-\frac{3}{b+1}\right)+\left(3c-\frac{2}{c+1}\right)\)
\(M=\left(a+2b+3c\right)-6\left(\frac{1}{a+1}+\frac{1}{2b+2}+\frac{1}{3c+3}\right)\)
\(M\le6-\frac{6.\left(1+1+1\right)^2}{a+1+2b+2+3c+3}\)
\(M\le6-\frac{6.9}{6+6}=6-\frac{9}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(a=3;b=1;c=\frac{1}{3}\)
Ta có: \(b=0,25P-2a\) thế ngược lên trên ta được
\(\frac{a^2+\left(0,25P-2a\right)^2}{a-2\left(0,25P-2a\right)}=2\)
\(\Leftrightarrow80a^2-a\left(16P+160\right)+P^2+16P=0\)
Để PT có nghiệm thì:
\(\Delta'\ge0\)
Làm tiếp nhé
Từ \(\frac{a^2+b^2}{a-2b}=2\Rightarrow a^2+b^2=2\left(a-2b\right)\)
\(\Leftrightarrow a^2+b^2=2a-4b\)
\(\Leftrightarrow a^2+b^2+4b=2a\)
\(\Leftrightarrow a.a+b.b+4b=2.a\)
\(\Leftrightarrow a.a+b\left(b+4\right)=2.a\)
\(\Leftrightarrow2.a-a.a=b\left(b+4\right)\)
\(\Leftrightarrow\frac{a}{b}=\frac{b+4}{2-a}\)
Mà muốn P lớn nhất thì a,b phải lớn nhất \(\Rightarrow a=b+4;b=2-a\)
\(\Leftrightarrow a+b=2\Leftrightarrow b+4+b=2\Leftrightarrow2b=-2\Rightarrow b=-1;a=3\)
\(\Rightarrow P=8a+4b=24-4=20\)
\(\frac{1}{2}\left(a+b\right)^2\le a^2+b^2=ab\left(a+b\right)+ab\le ab\left(a+b\right)+\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\frac{1}{2}\left(a+b\right)^2\le ab\left(a+b\right)+\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\frac{1}{4}\left(a+b\right)^2\le ab\left(a+b\right)\Rightarrow a+b\le4ab\)
\(\Rightarrow\frac{a+b}{ab}\le4\)
\(P=\frac{\sqrt{b\left(a+b\right)}}{ab}+\frac{\sqrt{a\left(a+b\right)}}{ab}=\frac{1}{2\sqrt{2}}\left(\frac{2\sqrt{2b\left(a+b\right)}+2\sqrt{2a\left(a+b\right)}}{ab}\right)\)
\(P\le\frac{1}{2\sqrt{2}}\left(\frac{2b+a+b+2a+a+b}{ab}\right)=\sqrt{2}\left(\frac{a+b}{ab}\right)\le4\sqrt{2}\)
\(P_{max}=4\sqrt{2}\) khi \(a=b=\frac{1}{2}\)