Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
là số hữu tỉ nên sẽ sẽ có dạng \(\frac{a-b\sqrt{2}}{b-c\sqrt{2}}=\frac{m}{n}< =>an-bn\sqrt{2}=bm-cm\sqrt{2}< =>\)
an-bm=\(\sqrt{2}\)(bn-cm)
an-bm là số nguyên; nên \(\sqrt{2}\left(bn-cm\right)\)là số nguyên => bn-cm=0 => an-bm=0
ta có bn=cm; bm=an => b2mn = cman <=> b2 =ac
\(a^2+b^2+c^2=a^2+c^2+2ac+b^2=\left(a+c\right)^2-2b^2+b^2=\)\(\left(a+c\right)^2-b^2=\left(a+c-b\right)\left(a+c+b\right)\)(1)
dễ thấy a+c-b>a+c+b nên để (1) là số nguyên tố thì a+c-b=1 => a2+b2+c2 =a+b+c
<=> a(a-1)+b(b-1)+c(c-1) = 0 => a=b=c=1
thử lại ta thấy thỏa mãn điều kiện đề bài => a=b=c=1
Sửa lại một chút: a2+b2+c2 =a2+c2+2ac -2ac+b2 =(a+c)2-2ac+b2
1.
\(A=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{6+2\sqrt{5}}}}{\sqrt{6-2\sqrt{5}}+2}=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}\)
\(=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{5}-4}}{\sqrt{5}-1+2}=\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}+1}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}\)
b. Thôi nhìn biến đổi khủng thế này thì nhường bạn :))
2.
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng tính chẵn lẻ
\(\Rightarrow\) có ít nhất một trong 3 hiệu \(a-b\) ; \(a-c\) ; \(b-c\) là chẵn
\(\Rightarrow a+b+c\) chẵn
- Nếu a;b;c cùng số dư khi chia hết cho 3 thì \(a-b;a-c;b-c\) đều chia hết cho 3 \(\Rightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)⋮27\Rightarrow a+b+c⋮27\)
Mà 27 và 2 nguyên tố cùng nhau nên \(a+b+c⋮\left(27.2=54\right)\)
- Nếu a;b;c chia 3 ra 3 loại số dư khác nhau là 0;1;2 \(\Rightarrow a+b+c⋮3\)
Đồng thời cả \(a-b;b-c;c-a\) đều ko chia hết cho 3
\(\Rightarrow\) Không thỏa mãn \(\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\)
- Nếu trong 3 số a;b;c có 2 số cùng số dư khi chia hết cho 3 và 1 số chia 3 khác số dư
\(\Rightarrow\) \(a+b+c⋮̸3\)
Trong khi đó ít nhất 1 trong 3 hiệu \(a-b;b-c;c-a\) sẽ có 1 giá trị chia hết cho 3 (do có 2 số cùng số dư khi chia 3)
\(\Rightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\) ko thỏa mãn
Vậy \(a+b+c⋮54\)
2b
Câu này đề có sai ko bạn? Trong căn là \(2\sqrt{x+4}\) thì còn có lý
Pt như nguyên mẫu được biến đổi thành:
\(\left(x^2+6x+9\right)+\left(x-4-2\sqrt{x-4}+1\right)+8=0\)
\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{x-4}-1\right)^2+8=0\)
Hiển nhiên vô nghiệm
3.
\(\frac{a}{a+1}\ge1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)
Tương tự: \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(c+1\right)}}\) ; \(\frac{c}{c+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)
Nhân vế với vế: \(\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
\(\Rightarrow abc\ge8\)
3)
Ta có : \(a^2+1=a^2+ab+bc+ca\)
\(=a.\left(a+b\right)+c.\left(a+b\right)\)
\(=\left(a+b\right)\left(a+c\right)\)
Tương tự ta có : \(b^2+1=\left(b+a\right)\left(b+c\right)\)
\(c^2+1=\left(c+a\right)\left(c+b\right)\)
Khi đó :
\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
\(=\sqrt{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\) là một số hữu tỉ với a,b,c hữu tỉ.
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
a/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)
\(=\sqrt{\frac{\left(b+c\right)^2.b^2+\left(b+c\right)^2.c^2+b^2.c^2}{\left(b+c\right)^2.b^2.c^2}}\)
\(=\sqrt{\frac{\left(b^2+bc+c^2\right)^2}{\left(b+c\right)^2.b^2.c^2}}\)
\(=\left|\dfrac{b^2+bc+c^2}{\left(b+c\right).b.c}\right|\)
Vậy \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)là số hữu tỉ
b/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\sqrt{\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{\left(2b+c\right)^2}}\)
\(=\sqrt{\frac{\left(b+c\right)^2.b^2+\left(b+c\right)^2.\left(2b+c\right)^2+\left(2b+c\right)^2.b^2}{\left(b+c\right)^2.\left(2b+c\right)^2.b^2}}\)
\(=\sqrt{\frac{\left(3b^2+3bc+c^2\right)^2}{\left(b+c\right)^2.\left(2b+c\right)^2.b^2}}\)
\(=\left|\dfrac{3b^2+3bc+c^2}{\left(b+c\right).\left(2b+c\right).b}\right|\)
Vậy \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}\) là số hữu tỉ
Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath
Mình sửa lại là \(a^2+b^2+c^2\)là số nguyên tố nhé