Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3a^2-b^2}{a^2+b^2}\)=\(\frac{3}{4}\)
=>4(3a2-b2)=3(a2+b2)
=>12a2-4b2=3a2+3b2
=>12a2-3a2=4b2+3b2
=>9a2=7b2
=>\(\frac{a^2}{b^2}\)=\(\frac{7}{9}\)
=>\(\frac{a}{b}\)=\(\sqrt{\frac{7}{9}}\)
Bài 1:
\(\frac{37-x}{3}\)= \(\frac{x-13}{7}\)
\(\Rightarrow\)\((37-x)\times7=(x-13)\times3\)
\(7\times37-7\times x=\)\(3\times x-3\times13\)
\(259-7x=\)\(3x-39\)
\(-7x-3x\)\(=\)\(\left(-39\right)-259\)
\(-10x=\)\(-298\)
\(x=(-298):\left(-10\right)\)
\(x=29.8\)
Vậy \(x=29.8\)
MÌNH CHỈ BIẾT BÀI 1. CHÚC BẠN HỌC TỐT
\(\frac{3a^2-b^2}{a^2+b^2}=\frac{3\left(\frac{a}{b}\right)^2-1}{\left(\frac{a}{b}\right)^2+1}=\frac{3}{4}\Leftrightarrow4.3\left(\frac{a}{b}\right)^2-4=3.\left(\frac{a}{b}\right)^2+3\)
\(\Leftrightarrow9.\left(\frac{a}{b}\right)^2=7\Leftrightarrow\left(\frac{a}{b}\right)^2=\frac{7}{9}\Leftrightarrow\int^{\frac{a}{b}=\frac{\sqrt{7}}{3}}_{\frac{a}{b}=-\frac{\sqrt{7}}{3}}\)
\(\frac{3a^2-b^2}{a^2+b^2}\)=\(\frac{3}{4}\)
=>4.(3a2-b=2)=3.(a2+b2)
4.3a2-4.b2=3.a2+3.b2
12a2-4b2=3a2+3b2
12a2-3a2=4b2+3b2
9a2=7b2
\(\frac{a^2}{b^2}\)=\(\frac{7}{9}\)
=>\(\frac{a}{b}\)=\(\sqrt{\frac{7}{9}}\)
đặt a/b=t
chia cả tử mấu cho b^2
\(\Leftrightarrow\frac{3t^2-1}{t^2+1}=\frac{3}{4}\)\(12t^2-4=3t^2+3\Rightarrow9t^2=7\Rightarrow\orbr{\begin{cases}\frac{a}{b}=t=\frac{\sqrt{7}}{3}\\\frac{a}{b}=t=\frac{-\sqrt{7}}{3}\end{cases}}\)
a/b=