\(\frac{2010c-2011b}{2009}=\frac{2011a-2009c}{2010}=\frac{2009b-2010a}{2011}\)
C...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

e moi co lop 6 nen k giai duoc

22 tháng 10 2019

phungtuantu  thek thì bl lm j hả bạn 

8 tháng 12 2018

\(\dfrac{2010c-2011b}{2009}=\dfrac{2011a-2009c}{2010}=\dfrac{2009b-2010a}{2011}\)

Đặt: \(\left\{{}\begin{matrix}2009=x\\2010=y\\2011=z\end{matrix}\right.\) Ta có:

\(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}\)

\(\Leftrightarrow\dfrac{cxy-bxz}{x^2}=\dfrac{ayz-cxy}{y^2}=\dfrac{bxz-ayz}{z^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{cxy-bxz}{x^2}=\dfrac{ayz-cxy}{y^2}=\dfrac{bxz-ayz}{z^2}=\dfrac{cxy-bxz+ayz-cxy+bxz-ayz}{x^2+y^2+z^2}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}cy=bz\Leftrightarrow\dfrac{b}{y}=\dfrac{c}{z}\\az=cx\Leftrightarrow\dfrac{a}{x}=\dfrac{c}{z}\\bx=ay\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\end{matrix}\right.\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\Leftrightarrow\dfrac{a}{2009}=\dfrac{b}{2010}=\dfrac{c}{2011}\left(đpcm\right)\)

26 tháng 2 2019

Làm ơn giúp mk!!

26 tháng 2 2019

\(\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{b-2011}{c-2010}\cdot\frac{-\left(c-2010\right)}{-\left(b-2011\right)}=1\)

\(\frac{a-2009}{b-2011}=\frac{2010-c}{2009-a}=\frac{-\left(c-2010\right)}{-\left(a-2009\right)}=\frac{c-2010}{a-2009}=1\Rightarrow a-2009=c-2010=b-2011\)

\(\Rightarrow a=c-1=b-2\Rightarrow c=b-1\Rightarrow\frac{b}{c}=\frac{b}{b-1}\)=.=' ko chắc lăm

6 tháng 2 2017

A= \(1-\frac{2011}{2012}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\)

B=\(\left(\frac{2012}{1}-1\right)+\left(\frac{2012}{2}-1\right)+...+\left(\frac{2012}{2011}-1\right)\)

= \(\frac{2012}{1}-\frac{2012}{2012}+\frac{2012}{2}-\frac{2012}{2012}+...+\frac{2012}{2011}-\frac{2012}{2012}\)

=\(2012\left(1-\frac{1}{2012}+\frac{1}{2}-\frac{1}{2012}+...+\frac{1}{2011}-\frac{1}{2012}\right)\)

\(\Rightarrow\)\(\frac{B}{A}\)=\(\frac{2012\left(1-\frac{2011}{2012}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\right)}{1-\frac{2011}{2012}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}\)= 2012

NV
18 tháng 6 2019

\(B=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2009+1+1}{2009}=\frac{2009}{2010}+\frac{2010}{2011}+1+\frac{1}{2009}+\frac{1}{2009}\)

\(B=\frac{2009}{2010}+\frac{1}{2009}+\frac{2010}{2011}+\frac{1}{2009}+1\)

\(B>\frac{2009}{2010}+\frac{1}{2010}+\frac{2010}{2011}+\frac{1}{2011}+1=3\)

18 tháng 6 2019

: B = \(\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2009}\)

=> \(\frac{2009}{2010}+\frac{2010}{2011}+1+\frac{1}{2019}+\frac{1}{2019}\)

ma : + 1 - \(\frac{2009}{2010}=\frac{1}{2010}\) /// \(\frac{1}{2019}>\frac{1}{2010}\) => \(\frac{2009}{2010}+\frac{1}{2009}>1\)

+ \(1-\frac{2010}{2011}=\frac{1}{2011}\) //// \(\frac{1}{2019}>\frac{1}{2011}\) => \(\frac{1}{2019}+\frac{2010}{2011}>1\)

=> \(\left(\frac{2009}{2010}+\frac{1}{2009}\right)+\left(\frac{2010}{2011}+\frac{1}{2019}\right)+1\)

( >1 + >1 + 1 ) > 3

Dung 100%