\(\frac{1}{m}=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+59}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

Ta có : \(\frac{1}{m}=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{59.60}=2\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{59}-\frac{1}{60}\right)\)

\(=2\left(\frac{1}{3}-\frac{1}{60}\right)=\frac{19}{30}\)

\(\Rightarrow m=\frac{30}{19}>\frac{2}{3}\)

18 tháng 8 2016

\(Tac\text{ó}:\frac{1}{m}=\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{59.60}=2\left(\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{59}-\frac{1}{60}\right)\)

\(=>2\left(\frac{1}{3}-\frac{1}{60}\right)=\frac{19}{30}\\ =>m=\frac{30}{19}>\frac{2}{3}\)

22 tháng 6 2016

\(\frac{1}{M}=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\frac{1}{1+2+3+4+5}+...+\frac{1}{1+2+3+...+59}\)

\(\frac{1}{M}=\frac{1}{3\left(1+3\right):2}+\frac{1}{4\left(1+4\right):2}+\frac{1}{5\left(1+5\right):2}+...+\frac{1}{59\left(1+59\right):2}\)

\(\frac{1}{M}=\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{59.60}\)

\(\frac{1}{M}=2\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{59}-\frac{1}{60}\right)\)

\(\frac{1}{M}=2\left(\frac{1}{3}-\frac{1}{60}\right)\)

\(\frac{1}{M}=\frac{1}{2}.\frac{19}{60}\)

\(\frac{1}{M}=\frac{19}{120}\)

\(M=\frac{120}{19}>\frac{2}{3}\left(đpcm\right)\)

27 tháng 12 2017

chuẩn men

22 tháng 7 2019

Mik lười quá bạn tham khảo câu 3 tại đây nhé:

Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath

22 tháng 7 2019

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)

\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)

\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)

\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)

11 tháng 3 2017

\(M=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+59}\)

\(M=\frac{1}{\frac{3.\left(3+1\right)}{2}}+\frac{1}{\frac{4.\left(4+1\right)}{2}}+\frac{1}{\frac{5.\left(5+1\right)}{2}}+...+\frac{1}{\frac{59.\left(59+1\right)}{2}}\)

\(M=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+\frac{1}{\frac{5.6}{2}}+...+\frac{1}{\frac{59.60}{2}}\)

\(M=\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{59.60}\)

\(M=2.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{59.60}\right)\)

\(M=2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{59}-\frac{1}{60}\right)\)

\(M=2.\left(\frac{1}{3}-\frac{1}{60}\right)\)

\(M< 2.\frac{1}{3}\)

\(M< \frac{2}{3}\)

Tham khảo nha bạn :

Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến

NV
20 tháng 4 2019

\(M=\frac{1}{3^2}+\frac{2}{3^3}+...+\frac{10}{3^{11}}\)

\(\Rightarrow3M=\frac{1}{3}+\frac{2}{3^2}+...+\frac{10}{3^{10}}\)

\(\Rightarrow3M-M=\frac{1}{3}+\frac{2}{3^2}-\frac{1}{3^2}+\frac{3}{3^3}-\frac{2}{3^3}+...+\frac{10}{3^{10}}-\frac{9}{3^{10}}-\frac{10}{3^{11}}\)

\(\Rightarrow2M=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}-\frac{10}{3^{11}}=A-\frac{10}{3^{11}}\)

\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}+\frac{1}{3^{10}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\)

\(\Rightarrow3A-A=1-\frac{1}{3^{10}}\)

\(\Rightarrow2A=1-\frac{1}{3^{10}}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^{10}}\Rightarrow A< \frac{1}{2}\)

\(\Rightarrow2M=A-\frac{10}{3^{11}}< A< \frac{1}{2}\)

\(\Rightarrow M< \frac{1}{4}\)

20 tháng 12 2016

Mình sửa chút: B>1