\(\frac{1}{a}+\frac{1}{b}\)+\(\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

Có: \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow\frac{ayz+bxz+cxy}{xyz}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Lại có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1-2\cdot\frac{ayz+bxz+cxy}{abc}=1-2\cdot\frac{0}{abc}=1\)

=>đpcm

14 tháng 12 2018

Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)

\(\Rightarrow\frac{bcx+acy+abz}{abc}=0\)

\(\Rightarrow bcx+acy+abz=0\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)

\(\Rightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=2^2\)

\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{ab}{xy}+\frac{bc}{yz}+\frac{ac}{xz}\right)=4\)

\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{abz+bcx+acy}{xyz}=4\)

\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{0}{xyz}=4\)

\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=4\)

Vậy \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=4\)

17 tháng 1 2017

Lạ nhỉ mình trả lời rồi mà

ta có {nhân phân phối ra dẽ hơn} là ghép nhân tử

\(\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\left(x+y+z\right)=\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}....\right)+\left(x+y+z\right)\)

Chia hai vế cho (x+y+z khác 0) chú ý => dpcm

17 tháng 1 2017

quái lại câu 1 đâu 

(a+b+c)=abc tất nhiên theo đầu đk a,b,c khác không

chia hai vế cho abc/2

2/bc+2/ac+2/ab=2 (*)

đăt: 1/a=x; 1/b=y; 1/c=z

ta có

x+y+z=k (**)

x^2+y^2+z^2=k(***)

lấy (*)+(***),<=>(x+y+z)^2=2+k

=> k^2=2+k

=> k^2-k=2 

k^2-k+1/4=1/4+2=9/4

\(\orbr{\begin{cases}k=\frac{1}{2}+\frac{3}{2}=\frac{5}{2}\\k=\frac{1}{2}-\frac{3}{2}=-\frac{1}{2}\end{cases}}\)

Mình chưa test lại đâu bạn tự test nhé

26 tháng 4 2017

bình phương gt1 và gt2 và thay vào là ra bạn à

20 tháng 4 2017

bài 1 ta có x+y+z=0 suy ra y+z=-x 

(-x)2=x2=(y+z)2=y2+2yz+z2

suy ra 

\(\frac{1}{y^2+z^2-x^2}=\frac{1}{-2yz}\)

tương tự ta có \(\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{-1}{2}\left(\frac{x+z+y}{xyz}\right)=\frac{-1}{2}\left(\frac{0}{xyz}\right)\)

bài 2 bạn ghi đề không rõ ràng nên mình không giải

21 tháng 4 2017

Tại sao lại \(\frac{1}{y^2+z^2-x^2}\)=\(\frac{1}{-2yz}\)

24 tháng 2 2017

câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)

vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)

Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)

24 tháng 2 2017

câu 3 98

16 tháng 12 2017

Sai đề rồi bạn ơi

Nếu đề là thế này thì mình ms làm được:

Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\).CMR:\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

1 tháng 1 2018

có thể đề như này : cho x/a+y/b+z/c=0 CM: (x/a)^3+(y/b)^3+(z/c)^3=(3xyz)/abc