\(f\left(x\right)=x.e^x\).

a. Tính \(f^{\left(3\right)}\le...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

a. \(f\left(x\right)=x.e^x\)

   \(f'\left(x\right)=e^x+x.e^x\)

   \(f"\left(x\right)=e^x+e^x+x.e^x=2e^x+x.e^x\)   

   \(f^{\left(3\right)}\left(x\right)=2e^x+e^x+x.e^x=3e^x+x.e^x\)

b.Từ (a) ta đi đến công thức  (dự đoán)

                \(f^{\left(n\right)}\left(x\right)=ne^x+x.e^x\)     (1)

Chứng minh (1) bằng quy nạp như sau :

- (1) đã đúng với  \(n=1,2,3\)

- Giả sử (1) đã đúng đến n, ta phải chứng minh :

               \(f^{\left(n+1\right)}\left(x\right)=\left(n+1\right)e^x+x.e^x\)        (2)

Thật vậy , từ giả thiết quy nạp, ta có :

\(f^{\left(n+1\right)}\left(x\right)=\left(f^{\left(n\right)}\left(x\right)\right)'=\left(ne^x+x.e^x\right)'=ne^x+e^x+x.e^x=\left(n+1\right)e^x+x.e^x\)

Vậy (2) đúng. Theo nguyên lí quy nạp suy ra (1) đúng với mọi \(n=1,2,3....\)

Tóm lại, ta có với mọi \(n=1,2,3....\)

\(f^{\left(n\right)}\left(x\right)=ne^x+x.e^x\)

5 tháng 5 2016

a. Ta có \(f'\left(x\right)=\ln x+x.\frac{1}{x}+\ln x\)

              \(f"\left(x\right)=\frac{1}{x}\)

              \(f'''\left(x\right)=-\frac{1}{x^2}\)

              \(f^{\left(4\right)}\left(x\right)=\frac{2}{x^3}\)

5 tháng 5 2016

b. Tương tự ta có : 

\(f^{\left(5\right)}\left(x\right)=-\frac{2.3}{x^4}\)

\(f^{\left(6\right)}\left(x\right)=\frac{2.3.4}{x^5}\)

Từ đó suy ra \(f^{\left(5\right)}\left(x\right)=\left(-1\right)^n\frac{\left(n-2\right)!}{x^{n-1}}\) với \(n\ge2\)

Thật vậy, ta sẽ thấy công thức đúng khi n=2,3,4,......

4 tháng 4 2017

a) Ta có f'(x) = 6(x + 10)'.(x + 10)5
\(=6.\left(x+10\right)^5\)

f"(x) = 6.5(x + 10)'.(x + 10)4 = 30.(x + 10)4.

=> f''(2) = 30.(2 + 10)4 = 622 080.

b) Ta có f'(x) = (3x)'.cos3x = 3cos3x,

f"(x) = 3.[-(3x)'.sin3x] = -9sin3x.

Suy ra f"\(\dfrac{-\pi}{2}\) = -9sin\(\dfrac{-3\pi}{2}\) = -9;

f"(0) = -9sin0 = 0;

f"\(\dfrac{\pi}{18}\) = -9sin\(\dfrac{\pi}{6}\) = \(\dfrac{-9}{2}\).

NV
25 tháng 2 2020

Đáp án A

Đó là nguyên lý của giới hạn kẹp

\(\left|f\left(x\right)\right|\le\left|x\right|\Rightarrow\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}x=0\)

NV
25 tháng 2 2020

Đáp án B, do giới hạn trái tại 0 bằng âm vô cùng, giới hạn phải tại 0 bằng dương vô cùng

4 tháng 4 2017

Ta có:

f(3)=√1+3=2f′(x)=12√1+x⇒f′(3)=12√1+3=14f(3)=1+3=2f′(x)=121+x⇒f′(3)=121+3=14

Suy ra:

f(3)+(x−3)f′(3)=2+x−34=5+x4



26 tháng 5 2017

TenAnh1 TenAnh1 A = (-4.3, -9.06) A = (-4.3, -9.06) A = (-4.3, -9.06) B = (11.06, -9.06) B = (11.06, -9.06) B = (11.06, -9.06) C = (-4.3, -9.26) C = (-4.3, -9.26) C = (-4.3, -9.26) D = (11.06, -9.26) D = (11.06, -9.26) D = (11.06, -9.26) F = (10.88, -9.14) F = (10.88, -9.14) F = (10.88, -9.14)

7 tháng 5 2016

Theo định nghĩa ta có :

\(f'\left(x\right)=\lim\limits_{\Delta x\rightarrow0}\frac{f\left(a+\right)-f\left(a\right)}{\Delta x}\)

         \(=\lim\limits_{\Delta x\rightarrow0}\frac{\left(a+\Delta x-1\right)\varphi\left(a+\Delta x\right)}{\Delta x}\) do (\(f\left(a\right)=0\))

          \(=\lim\limits_{\Delta x\rightarrow0}\varphi\left(a+\Delta x\right)\)

Khi \(\Delta x\rightarrow0\) thì \(a+\Delta x\rightarrow a\) và do \(\varphi\left(x\right)\) là hàm liên tục tại x = a nên có :

\(\lim\limits_{\Delta x\rightarrow0}\varphi\left(a+\Delta x\right)=\varphi\left(a\right)\)

Vậy \(f'\left(a\right)=\varphi\left(a\right)\)