\(f\left(x\right)=x^2+x\)

Tính \(\dfrac{1}{f\left(1\righ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 4 2018

Lời giải:

Ta có:

\(f(x)=x^2+x\Rightarrow \frac{1}{f(x)}=\frac{1}{x^2+x}=\frac{1}{x(x+1)}=\frac{1}{x}-\frac{1}{x+1}\)

Do đó:

\(\frac{1}{f(1)}=1-\frac{1}{2}\)

\(\frac{1}{f(2)}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{f(3)}=\frac{1}{3}-\frac{1}{4}\)

......

\(\frac{1}{f(2014)}=\frac{1}{2014}-\frac{1}{2015}\)

\(\frac{1}{f(2015)}=\frac{1}{2015}-\frac{1}{2016}\)

Cộng theo vế:
\(\frac{1}{f(1)}+\frac{1}{f(2)}+\frac{1}{f(3)}+...+\frac{1}{f(2014)}+\frac{1}{f(2015)}=1-\frac{1}{2016}\)

\(=\frac{2015}{2016}\)

13 tháng 12 2022

Bài 2:

f(x)=x^2; g(x)=2/x

f(g(x))=(2/x)^2=4/x^2

g(f(x))=g(x^2)=2/x^2

18 tháng 4 2017

Ta có y = f(x) = 3x2 + 1. Do đó

f(\(\dfrac{1}{2}\)) = 3.\(\left(\dfrac{1}{2}\right)^2\) + 1 = \(\dfrac{3}{4}\)+ 1 = \(\dfrac{7}{4}\)

f(1) = 3.12 + 1 = 3.1 + 1 = 3 + 1 = 4

f(3) = 3.32 + 1 = 3.9 + 1 = 27 + 1 = 28.



19 tháng 4 2017

y = f (x) = 3x2 + 1

f \(\left(\dfrac{1}{2}\right)\)= 3 . \(\left(\dfrac{1}{2}\right)^2\) + 1 = 3 . \(\dfrac{1}{4}\) + 1 = \(\dfrac{3}{4}+1\) = \(\dfrac{7}{4}\)

f (1) = 3 . 12 + 1= 3 + 1 = 4

f (3) = 3 . 32 + 1 = 3 . 9 + 1 = 28

AH
Akai Haruma
Giáo viên
29 tháng 8 2017

Lời giải:

Ta có thể viết dạng của $f(x)$ như sau:

\(f(x)=(x-1)(x-2)(x-3)(x-t)+g(x)\)

Trong đó, \(t\) là một số bất kỳ nào đó và \(g(x)\) là đa thức có bậc nhỏ hơn hoặc bằng $3$

Giả sử \(g(x)=mx^3+nx^2+px\)

\(\left\{\begin{matrix} f(1)=g(1)=m+n+p=10\\ f(2)=g(2)=8m+4n+2p=20\\ f(3)=g(3)=27m+9n+3p=30\end{matrix}\right.\)

Giải hệ trên thu được \(m=0,n=0,p=10\)

Như vậy \(f(x)=(x-1)(x-2)(x-3)(x-t)+10x\)

Do đó \(\left\{\begin{matrix} f(12)=990(12-t)+120=12000-990t\\ f(-8)=-990(-8-t)-80=7840+990t\end{matrix}\right.\)

\(\Rightarrow \frac{f(12)+f(-8)}{10}+26=\frac{12000+7840}{10}+26=2010\) (đpcm)

6 tháng 5 2018

C1:Chương IV : Biểu thức đại số

6 tháng 5 2018

C2: Có sai sót j mong bn thông cảm! Viết hơi ẩu ☺Chương IV : Biểu thức đại số

24 tháng 7 2017

\(E=\dfrac{4\left|x\right|+9}{\left|x\right|+1}\)

\(\left\{{}\begin{matrix} \left|x\right|\ge0\Rightarrow4\left|x\right|\ge0\Rightarrow4\left|x\right|+9\ge9\\\left|x\right|\ge0\Rightarrow x+1\ge1\end{matrix}\right.\)

\(MAX_E\Rightarrow MIN_{\left|x\right|+1}\)

\(MIN_{\left|x\right|+1}=1\)

\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)

\(\Rightarrow MAX_E=\dfrac{4.\left|0\right|+9}{\left|0\right|+1}=\dfrac{9}{1}=9\)

\(F=\dfrac{2\left|x\right|+8}{3\left|x\right|+1}\)

\(\left\{{}\begin{matrix}\left|x\right|\ge0\Rightarrow2\left|x\right|\ge0\Rightarrow2\left|x\right|+8\ge8\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|+1\ge1\end{matrix}\right.\)

\(MAX_F\Rightarrow MIN_{3\left|x\right|+1}\)

\(MIN_{3\left|x\right|+1}=1\)

\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)

\(\Rightarrow MAX_F=\dfrac{2.\left|0\right|+8}{3.\left|0\right|+1}=\dfrac{8}{1}=8\)

\(\)

1) Tính \(A=\dfrac{1}{13}+\dfrac{3}{13.23}+\dfrac{3}{23.33}+...+\dfrac{3}{2003.2013}\) \(B=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{2018}-1\right)\) 2) Tìm x biết: a) \(x^2-2x-15=0\) b) \(\dfrac{3}{\left(x+2\right).\left(x+5\right)}+\dfrac{5}{\left(x+5\right).\left(x+10\right)}+\dfrac{7}{\left(x+10\right).\left(x+17\right)}=\dfrac{x+1}{\left(x+2\right).\left(x+17\right)}\) 3) Cho \(\dfrac{a}{b}=\dfrac{d}{c}\) . Chứng...
Đọc tiếp

1) Tính

\(A=\dfrac{1}{13}+\dfrac{3}{13.23}+\dfrac{3}{23.33}+...+\dfrac{3}{2003.2013}\)

\(B=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{2018}-1\right)\)

2) Tìm x biết:

a) \(x^2-2x-15=0\)

b) \(\dfrac{3}{\left(x+2\right).\left(x+5\right)}+\dfrac{5}{\left(x+5\right).\left(x+10\right)}+\dfrac{7}{\left(x+10\right).\left(x+17\right)}=\dfrac{x+1}{\left(x+2\right).\left(x+17\right)}\)

3) Cho \(\dfrac{a}{b}=\dfrac{d}{c}\) . Chứng minh: \(\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)

4) Cho \(f\left(x\right)=x^{100}-x^{99}+...+x^2-x+1\)

\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)

Tính giá trị của hiệu \(f\left(x\right)-g\left(x\right)\) tại x=0,1

5) Cho tam giác ABC có \(\widehat{A}=\ge90\) ; \(M\in AB,N\in AC\)

Chứng minh: BC > MN

6) Cho tam giác ABC, M là trung điểm BC, biết \(\widehat{BAM}>\widehat{CAM}\) . So sánh B và C

2
21 tháng 3 2018

1)\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2017}{2018}\)

\(B=\dfrac{1}{2018}\)

2)a)\(x^2-2x-15=0\)

\(\Leftrightarrow x^2-2x+1-16=0\)

\(\Leftrightarrow\left(x-1\right)^2-16=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

3)\(\dfrac{a}{b}=\dfrac{d}{c}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}\)

Lại có:\(\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a^2+d^2}{b^2+c^2}\)

\(\Rightarrow\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)

4)Ta có:\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)

\(g\left(x\right)=-x^{101}+\left(x^{100}-x^{99}+...+x^2-x+1\right)\)

\(g\left(x\right)=-x^{101}+f\left(x\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=f\left(x\right)+x^{101}-f\left(x\right)=x^{101}\)

Tại x=0 thì f(x)-g(x)=0

Tại x=1 thì f(x)-g(x)=1

24 tháng 3 2018

CHu làm cô liễu ko lo làm Mai báo cô

24 tháng 7 2017

mình làm lại câu b) nha

b) |x-3|=-4

th1: x-3=-4

x=3+(-4)

x=-1

th2: x-3=4

x=3+4

x=7

24 tháng 7 2017

b) \(\left|x-3\right|=-4\)

t/h1:\(x-3=-4\)

\(x=3-\left(-4\right)\)

\(x=7\)

t/h2:\(x-3=4\)

\(x=3-4\)

\(x=-1\)

14 tháng 11 2017

Câu C

15 tháng 11 2017

Why ?!?

24 tháng 7 2017

|2x-1|=1,5

TH(1)2x-1=1,5

2x =1,5+1

2x =2,5

x =2,5 :2

x =1,25

TH(2) 2x-1=-1,5

2x =-1,5+1

2x =-0,5

x =-0,5:2

x =-0,25

các câu khác cứ tương tự bạn nhé

24 tháng 7 2017

b) \(7,5-\left|5-2x\right|=-4,5\)

\(\left|5-2x\right|=7,5+4,7\)

\(\left|5-2x\right|=12\)

th1 :\(5-2x=12\)

\(2x=5-12\)

\(2x=-7\)

\(x=-7:2\)

\(x=-3,5\)

th2: \(5-2x=-12\)

\(2x=5+12\)

\(2x=17\)

\(x=17:2\)

\(x=8,5\)

c) \(-3+\left|x\right|=-1\)

\(\left|x\right|=-1+3\)

\(\left|x\right|=2\)

th1: \(x=-2\)

th2 : \(x=2\)

d)\(\left|2\dfrac{1}{3}-x\right|=\dfrac{1}{6}\)

\(\left|\dfrac{7}{3}-x\right|=\dfrac{1}{6}\)

th1 :\(\dfrac{7}{3}-x=\dfrac{1}{6}\)

\(x=\dfrac{7}{3}-\dfrac{1}{2}\)

\(x=\dfrac{11}{6}\)

th2: \(\dfrac{7}{3}-x=\dfrac{-1}{6}\)

\(x=\dfrac{7}{3}+\dfrac{1}{6}\)

\(x=\dfrac{-5}{2}\)

e) \(\dfrac{5}{7}-\left|x+1\right|=\dfrac{1}{14}\)

\(\left|x+1\right|=\dfrac{5}{7}-\dfrac{1}{14}\)

\(\left|x+1\right|=\dfrac{9}{14}\)

th1 :\(x+1=\dfrac{9}{14}\)

\(x=\dfrac{9}{14}-1\)

\(x=\dfrac{-5}{14}\)

th2 : \(x+1=\dfrac{-9}{14}\)

\(x=\dfrac{-9}{14}-1\)

\(x=\dfrac{-5}{14}\)