\(f\left(x\right)=ax^2+bx+c\) với a,b,c là số hữu tỉ. Chứng tỏ rằng : f(-2) ....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2019

\(f\left(x\right)=ax^2+bx+c\)

Ta có : \(f\left(-2\right)=4a-2b+c\)

          \(f\left(3\right)=9a+3b+c\)

\(\Rightarrow\) \(f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c\)

                                       \(=13a+b+c\)

                                       \(=0\)

\(\Rightarrow\) \(-f\left(-2\right)=f\left(3\right)\)

\(\Rightarrow\) \(f\left(-2\right).f\left(3\right)=f\left(-2\right).-f\left(-2\right)=-\left[f\left(-4\right)\right]^2\le0\)

\(\Rightarrow\) \(đpcm\)

Study well ! >_<

30 tháng 3 2019

tốt lắm bạn 

                                                          Đề kiểm tra học sinh giỏi lớp 7 ( Thời gian 120 phút )Bài 1:( 6đ)a)Tính \(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)b) Tìm x,y,z biết: \(3.\left(x-1\right)=2.\left(y-2\right);4.\left(y-2\right)=3.\left(z-3\right)\)và \(2x+3y-z=50\)c) Cho \(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\). Chứng tỏ B không là...
Đọc tiếp

                                                          Đề kiểm tra học sinh giỏi lớp 7 ( Thời gian 120 phút )

Bài 1:( 6đ)

a)Tính \(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

b) Tìm x,y,z biết: \(3.\left(x-1\right)=2.\left(y-2\right);4.\left(y-2\right)=3.\left(z-3\right)\)và \(2x+3y-z=50\)

c) Cho \(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\). Chứng tỏ B không là số nguyên

Bài 2:( 3đ )

a) Chứng minh rằng: \(2a-5b+6c⋮17\)nếu \(a-11b+3c⋮17\)( a,b,c thuộc Z)

b) Biết \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\). Chứng minh rằng : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Bài 3: (3đ)

a) Độ dài ba cạnh của tam giác tỉ lệ với 2;3;4. Ba chiều cao tương ứng với 3 cạnh đó tỉ lệ với ba số nào ?

b) Ba phân số có tổng bằng \(\frac{213}{70}\), các tử của chúng tỉ lệ với 3;4;5 các mẫu của chúng tỉ lệ với 5;1;2. Tìm ba phân số đó.

Bài 4:(6đ)

Cho tam giác ABC vuông tại A ( AB < AC ). M là trung điểm của BC, trên tia đối của tia MA lấy N sao cho MA=MN. Vẽ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD=HA. Đường thẳng vuông góc với BC tại D cắt AC ở E.

1. Chứng minh tam giác ABC và tam giác CNA bằng nhau.

2.Chứng minh AB=AE

3.Gọi K là trung điểm BE. Tính số đo góc CHK.

Bài 5(2đ)

a) Cho 2n+1 là số nguyên tố ( n > 2 ). Chứng minh 2n-1 là hợp số.

b) Cho f(x)=ax2+bx+c Với a,b,c là các số hữu tỉ.

 Chứng tỏ rằng: \(f\left(-2\right).f\left(-3\right)\le0\). Biết rằng 13a+b+2c=0.

 

 

 

 Tìm thiên tài nek. Hoặc có thể tham khảo cho kì thi thành phố. 

 

2
11 tháng 3 2019

tuyển học sinh giỏi 7

11 tháng 3 2019

cấm đăng nhùng nhằng ko giải thì thui  tui tích sai 3 cái mỗi ngày đấy. Muốn nói gì thì chat riêng

26 tháng 4 2018

Ta có: \(P\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a\left(-1\right)^2-b+c=a-b+c\\P\left(-2\right)=a.\left(-2\right)^2-2b+c=4a-2b+c\end{cases}}\)

\(\Rightarrow P\left(-1\right).P\left(-2\right)\)

\(=\left(a-b+c\right)\left(4a-2b+c\right)\)

\(=[5a-3b+c-4a+2b-c]\left(4a-2b+c\right)\)

\(=[0-\left(4a-2b+c\right)]\left(4a-2b+c\right)\)

\(=-\left(4a-2b+c\right)\left(4a-2b+c\right)\)

\(=-\left(4a-2b+c\right)^2\)

Mặt khác \(\left(4a-2b+c\right)^2\ge0\)

\(\Rightarrow-\left(4a-2b+c\right)^2\le0\)

\(\Rightarrow P\left(-1\right).P\left(-2\right)\le0\left(đpcm\right)\)

25 tháng 4 2019

Ta có:

\(P\left(1\right)=a+b+c\)

\(P\left(4\right)=16a+4b+c\)

\(P\left(9\right)=81a+9b+c\)

Vì P(1); P(4) là số hữu tỉ nên \(P\left(4\right)-P\left(1\right)=15a+3b=3\left(5a+b\right)\)là số hữu tỉ

=> \(5a+b\)là số hữu tỉ (1)

Vì P(1); P(9) là số hữu tỉ nên \(P\left(9\right)-P\left(1\right)=80a+8b=8\left(10a+b\right)\)là số hữu tỉ

=> \(10a+b\)là số hữu tỉ (2)

Từ (1), (2) => \(\left(10a+b\right)-\left(5a+b\right)=10a+b-5a-b=5a\)là số hữu tỉ

=> a là số hữu tỉ

Từ (1)=> b là số hữu tỉ

=> c là số hữu tỉ

16 tháng 8 2017

Ta có \(f\left(-2\right)\times f\left(-3\right)=\left(4a-2b+c\right).\left(9a+3b+c\right)=\left(4a-2b+c\right).\left[13a+b+2c-\left(4a-2b+c\right)\right]\)

\(13a+b+2c=0\) theo giả thiết.

\(\Rightarrow f\left(-2\right)\times f\left(3\right)=-\left[\left(4a-2b+c\right)^2\right]\)

\(\left(4a-2b+c\right)^2\) luôn \(\ge0\Rightarrow f\left(-2\right)\times f\left(3\right)\) \(\le0\)

18 tháng 8 2017

Thanks bạn nhahihi

25 tháng 3 2016

Cho f(x)=ax^2+bx+c với a,b,c là số hữu tỉ .Biết 13a+b+2c>0

Chứng Minh: trong 2 biểu thức f(-2);f(3) ít nhất có 1 biểu thức dương

hãy tích khi ko muốn tích nha các bạn 

đùa thui!!!

25 tháng 3 2016

tớ mún tích cho cậu nhưng cậu nói thế thì thui nha