K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2015

Đặt m = a - 1; n = 1 - b => m - n = a + b - 2 => a + b = m - n + 2

f(a - 1) = f(m) = 0 ; f(1 - b) = f(n) = 0 => f(m) = f(n) => m3 + 2m - 2015 = n3 + 2n - 2015

=> m- n3 + 2(m - n) = 0 

=> (m - n)(m2 + mn + n2 + 2) = 0

=> m - n = 0 (vì m+ mn + n2 + 2 = (m + \(\frac{n}{2}\))2 + \(\frac{3n^2}{4}\)+ 2 > 0 với mọi m; n)

=> a+ b = 2 

9 tháng 9 2015

giang ho dai ca xin lỗi bn nhưng vì ko đăng đc câu hỏi nên mk phải dùng biện pháp này: các bn xem bài này mk lập luận đúng ko nha!

đề: tìm 3 số tự nhiên liên tiếp có tổng=24

                     giải

TBC 3 số là: 24:3=8

TBC của 3 số là 8 mà đề bài là tìm 3 số ự nhiên"liên tiếp " nên 1 số phải <8 và 1 số phải>8

z 3 số đó là: 7;8;9

 

12 tháng 7 2019

a)\(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

b)2x ( x - 2 ) - (x - 2 ) = 0

\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\)

c)\(x+5x^2=0\)

\(\Leftrightarrow x\left(1+5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{1}{5}\end{matrix}\right.\)

12 tháng 7 2019

\(x^3+x=0\)

\(\Leftrightarrow x\left(x^2+1\right)=0\)

\(x^2+1>0\forall x\)

nên x=0

27 tháng 8 2021

Mik mới bít ý b thôi , còn ý a mik đang nghĩ nha ^^

undefined

17 tháng 2 2018

1. cho các số thực dương x,y,z t/mãn: x2 + y2 + z2 = 1

Cmr: \(\frac{x}{y^2+z^2}\) + \(\frac{y}{x^2+z^2}+\frac{z}{x^2+y^2}\ge\) \(\frac{3\sqrt{3}}{2}\)

2. Cho x,y thỏa mãn \(\hept{\begin{cases}xy\ge0\\x^2+y^2=1\end{cases}}\)

Tìm GTNN,GTLN của \(S=x\sqrt{1+y}+y\sqrt{1+x}\)

3. Cho \(\hept{\begin{cases}xy\ne0\\xy\left(x+y\right)=x^2+y^2-xy\end{cases}}\)

Tìm GTLN của      \(A=\frac{1}{x^3}+\frac{1}{y^3}\)

4. Cho tam giác ABC; đường thẳng đi qua trọng tâm G và tâm đường tròn nội tiếp I vuông góc với đường phân giác trong của góc C. Gọi a,b,c là độ dài 3 canh tương ứng với 3 đỉnh A,B,C.

Cmr:  \(\frac{1}{a}+\frac{1}{b}\le\frac{2}{c}\)

26 tháng 2 2019

ui má. đúng mấy bài tập thầy tui cho ôn. giờ đang loay hoay

31 tháng 12 2017

a. \(2x\left(x+5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2+10x-3x-2x^2=26\Leftrightarrow7x=26\Leftrightarrow x=\dfrac{26}{7}\)

Vậy \(x=\dfrac{26}{7}\)

b. \(5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\5x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

c. \(2\left(x+5\right)-x^2-5x=0\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

d. \(\left(2x-3\right)^2-\left(x+5\right)^2=0\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

e. \(3x^3-48x=0\Leftrightarrow3x\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}3x=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)

f. \(x^3+x^2-4x=4\Leftrightarrow x^3+x^2-4x-4=0\Leftrightarrow\left(x^2-4x+4\right)+\left(x^3-8\right)=0\Leftrightarrow\left(x-2\right)^2+\left(x-2\right)\left(x^2+2x+4\right)=0\Leftrightarrow\left(x-2\right)\left(x-2+x^2+2x+4\right)=0\left(x-2\right)\left(x^2+3x+2\right)=0\Leftrightarrow\left(x-2\right)\left(x^2+x+2x+2\right)=0\Leftrightarrow\left(x-2\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]=0\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\\x=-2\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)

g. \(\left(x-1\right)\left(2x+3\right)-x\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-x\right)=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

h. \(x^2-4x+8=2x-1\Leftrightarrow x^2-4x+8-2x+1=0\Leftrightarrow x^2-6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy \(x=3\)

__________________________Chúc bạn học tốt____________________________

1 tháng 1 2018

Thankshihi

1 tháng 3 2017

Đa thức bậc hai cần tìm có dạng f(x) = ax+bx+c (a khác 0 )

Ta có f(x-1)=a(x-1)2+b(x-1)+c

=>a=1                =>a=0.5

    b-a=0                   b=0.5

Vậy đa thức cần tìm có dạng 0.5x2+0.5x+c      (c la hang so tuy y)

Ap dung :

+>Với x=1 ta có f(1)-f(0) = 1

+>Với x=2 ta có f(2)-f(1) = 2

. . . . . . . . . . . . 

+>Voi x=n ta co f(n)-f(n-1)=n

=>S=1+2+3+......+n= f(n)-f(0)= n2/2+n/2 +c-c= n*(n+1)/2

27 tháng 9 2017

+,  f(0)=1

=> a.0^2+b.0+c=1

    a.0 +0 +c=1

0+0+c=1

=> c=1

+, f(1)=-1

=> a.1^2+b.1+1=-1

a+b+1=-1

a+b=-1-1

a+b=-2

+, f(-1)=5

=> a.(-1)^2 + b.(-1) +1 =5

a-b+1=5

a-b=5-1

a-b= 4

vì a+b=-2 và a-b= 4

=> a= (-2+4):2=1

b=-2-1=-3

vậy a=1; b=-3; c=1

31 tháng 3 2020

\(a,\left(2x+1\right)\left(x^2+2\right)=0\)

\(\left[{}\begin{matrix}2x=-1\\x^2=-2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{matrix}\right.\)

\(b,\left(x^2+x+1\right)\left(6-2x\right)=0\)

\(6-2x=0\Leftrightarrow2x=6\Leftrightarrow x=3\)

\(c,\left(x-5\right)\left(3-2x\right)\left(3x+4\right)=0\)

\(\left[{}\begin{matrix}x-5=0\\3-2x=0\\3x+4=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=5\\2x=3\\3x=-4\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\\x=-\frac{4}{3}\end{matrix}\right.\)

31 tháng 3 2020

\(d,\left(x^2+4\right)\left(7x-3\right)=0\)

\(\left[{}\begin{matrix}x^2+4=0\\7x-3=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x^2=-4\\7x=3\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\pm2\left(voli\right)\\x=\frac{3}{7}\end{matrix}\right.\)

\(e,\left(8x-4\right)=\left(x^2+x+2\right)\)

\(8x-4=x^2+x+2\)

\(8x-4-x^2-x-2=0\)

\(7x-6-x^2=0\)

\(\left(x-6\right)\left(x-1\right)=0\)

\(\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

\(f,\left(2x-1\right)\left(3x+2\right)\left(5-x\right)\)

đề thiếu hay là rút gọn vậy bn