\(x^2\)

tìm giá trị lớn nhất 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

TA CÓ ; F=1-X-X^2=-(X^2+2.X.1/2+1/4)+5/4=-(X-1/2)^2+5/4=<5/4

Vậy GTLN của F là 5/4 xảy ra khi x=1/2

19 tháng 8 2020

\(F=1-x-x^2\)

\(F=\left(-x^2-x-\frac{1}{4}\right)+\frac{5}{4}\)

\(F=-\left[x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2\right]+\frac{5}{4}\)

\(F=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(-\left(x+\frac{1}{2}\right)^2\le0\forall x\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)

Dấu " = " xảy ra <=> x + 1/2 = 0 => x = -1/2

=> MaxF = 5/4 <=> x = -1/2

16 tháng 5 2018

Ta có : \(f\left(x\right)=x^2+6x+15=\left(x+3\right)^2+6\ge6\)

Vậy Min = 6 <=> x = - 3

Nhận thấy , giá trị của x càng tăng thì giá trị của f(x) cũng tăng theo 

Vậy f(x) không có giá trị lớn nhất .

16 tháng 5 2018

Có: \(f\left(x\right)=x^2+6x+15=x^2+2.3x+3^2+6=\left(x+3\right)^2+6\)

Có: \(\left(x+3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+3\right)^2+6\ge6\forall x\)

\(\Rightarrow\)GTNN của f(x) là 6 khi: ( x+3 )2 = 0

                                                     x+3 = 0

                                                          x=-3

Vậy GTNN của f(x) là 6 khi x=-3

Chúc bạn học tốt!

17 tháng 7 2018

\(E=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\)

vậy GTLN của E là 21 khi \(x=-4\)

\(F=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)=-\left(x-2\right)^2+5\le5\)

vay.............................................

26 tháng 1 2020

câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được

2. xét x^2- 6x + 10

= X^2 -6x +9 +1

=(x^2 -3 )^2 +1

Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R

=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R

=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)

=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R

Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0

=> x-3 = 0

=> x=3

Vậy giá tị lớn nhất của P là 1 đạt được khi x=3

2 tháng 9 2018

\(A=x^2-3x+5\)

\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)

Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)

2 tháng 9 2018

a) \(A=x^2-3x+5\)

\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\("="\Leftrightarrow x=5\Rightarrow x=0;5\)

c) \(C=4x-x^2+3\)

\("="\Leftrightarrow x=7\Rightarrow x=2;7\)

d) \(D=x^4+x^2+2\)

\("="\Leftrightarrow x=2\Rightarrow x=0;2\)

13 tháng 5 2020

\(A^2=\left(x+y\right)^2\le2\left(x^2+y^2\right)=2\Rightarrow-\sqrt{2}\le A\le\sqrt{2}\)

Amin = \(-\sqrt{2}\Leftrightarrow x=y=-\frac{1}{\sqrt{2}}\)

Amax \(=\sqrt{2}\) khi \(x=y=\frac{1}{\sqrt{2}}\)

25 tháng 11 2018

Ta sẽ cm bổ đề sau: 

Bổ đề\(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\) (Bunyakovski 2 số)

C/m : Ta thấy: \(\left(ad-bc\right)^2\ge0\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)

      \(\Leftrightarrow a^2d^2+b^2c^2\ge2abcd\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+2abcd+b^2d^2\)

       \(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

Đẳng thức xảy ra khi và chỉ khi \(\frac{a}{c}=\frac{b}{d}\)

Quay lại bài toán, áp dụng bđt bunyakovski ta có :

     \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\ge\left(x+y\right)^2\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\hept{\begin{cases}min\left(x+y\right)=-\sqrt{2}\Leftrightarrow x=y=\frac{-1}{\sqrt{2}}\\max\left(x+y\right)=\sqrt{2}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\end{cases}}\)