\(\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+.......+\frac{3n+1}{3^n}\)

Với mọ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Khó dữ vậy!!!!

6 tháng 5 2017

Đợi tí , mạng chậm

15 tháng 8 2019

Hơi lâu nên đợi anh chút

15 tháng 8 2019

\(D=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{3n+1}{3^n}\)

\(\Rightarrow3D=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{3n+1}{3^{n-1}}\)

\(\Rightarrow3D-D=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{3n+1}{3^{n-1}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{3n+1}{3^n}\right)\)

\(\Rightarrow2D=4+1+\frac{1}{3}+...+\frac{1}{3^{n-2}}-\frac{3n+1}{3^n}\)

Đặt \(M=4+1+\frac{1}{3}+...+\frac{1}{3^{n-2}}\)

\(\Rightarrow3M=12+3+1+...+\frac{1}{3^{n-3}}\)

\(\Rightarrow3M-M=\left(12+3+1+...+\frac{1}{3^{n-3}}\right)-\left(4+1+\frac{1}{3}+...+\frac{1}{3^{n-2}}\right)\)

\(\Rightarrow2M=11-\frac{1}{3^{n-2}}< 11\)

\(\Rightarrow2M< 11\)

\(\Rightarrow M< \frac{11}{2}\)

\(\Rightarrow2D< \frac{11}{2}\)

\(\Rightarrow D< \frac{11}{4}\left(đpcm\right)\)

25 tháng 1 2018

Tham khảo theo link này nhé!

Chứng minh: 1/2^3 + 1/3^3 + 1/4^3 + ... + 1/n^3 < 1/4 với n thuộc N, n ≥ 2 - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

29 tháng 6 2020

\(A< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left(n-1\right)\cdot n\cdot\left(n+1\right)}\)

Nhận xét: mỗi số hạng tổng có dạng

\(\frac{1}{\left(n-1\right)\cdot n\cdot\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n\left(n-1\right)}-\frac{1}{n\left(n+1\right)}\right)\)

Từ đó suy ra: \(A< \frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\right)< \frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}\left(đpcm\right)\)

14 tháng 4 2018

Phân số \(\frac{n}{n+1}\) là phân số tối giản rồi bạn nhé

24 tháng 4 2017

de nay kho nhi

3 tháng 5 2017

Bài 2 a:

\(A=n^3+3n^2+2n=n^3+n^2+2n^2+2n=n^2\left(n+1\right)+2n\left(n+1\right)=\left(n^2+2n\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Mà tích 3 số nguyên liên tiếp chia hết cho 3,  suy ra A chia hết cho 3