Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(y'=\frac{x^2-2mx+m^2}{\left(x-2m\right)^2},x\ne2m\)
Để y có hai khoảng đồng biến trên toàn miền xác định thì
\(y'\ge0,\forall x\ne2m\)
\(\Leftrightarrow x^2-4mx+m^2\ge0,\forall x\ne2m\)
\(\Leftrightarrow\Delta'\le0\Leftrightarrow4m^2-m^2\le0\)
\(\Leftrightarrow3m^2\le0\Leftrightarrow m=0\)
Câu tiếp theo:
y đồng biến trên\(\left(1,\infty\right)\Leftrightarrow y'\ge0,\forall x\in\left(1,+\infty\right)\)
\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=x^2-4mx+m^2\ge0,\forall x>1\\2m\notin\left(1,\infty\right)\end{cases}}\)
Để cj suy nghĩ mai lm tiếp=.=
rõ ràng m=0 thì đk trên thõa mãn.
Với \(m=0:\Delta'=3m^2>0\) nên ta có:
\(f\left(x\right)\ge0,\forall x>1\Leftrightarrow x_1< x_2\le1\)
\(\Leftrightarrow\hept{\begin{cases}\Delta'>0\\f\left(1\right)\ge\\\frac{S}{2}-1< 0\end{cases}0}\)
\(f\left(1\right)\ge0\Leftrightarrow m^2-4m+1\ge0\Leftrightarrow m\le2-\sqrt{3}\)hay\(m\ge2+\sqrt{3}\)
\(\frac{S}{2}-1< 0\Leftrightarrow2m-1< 0\Leftrightarrow m< \frac{1}{2}\)
\(2m\notin\left(1,\infty\right)\Leftrightarrow2m\le1\Leftrightarrow m\le\frac{1}{2}\)
Vậy \(m\le2-\sqrt{3}\)là giá trị m cần tìm
\(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\)
\(\Leftrightarrow x^3+8y^3=0\) (*)
\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\)
\(\Leftrightarrow x^3-8y^3=16\) (**)
Từ (*) và (**) cộng theo vế:
\(\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Thay x = 2 và (*):
\(\Leftrightarrow2^3+8y^3=0\Leftrightarrow8y^3=-8\Leftrightarrow y^3=-1\Leftrightarrow y=-1\)
\(\:x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
\(=x^3+x^2+x-x^3-x^2-x+5=5\)
Vậy biểu thức ko phụ thuộc vào biến x
\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)+2x^4\)
\(=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+y^3x-y^4+2x^4\)
\(=3x^4-y^4\)
a: \(\Leftrightarrow x^2-2x+1+y^2+4y+4=0\)
=>(x-1)^2+(y+2)^2=0
=>x=1 và y=-2
b: \(\Leftrightarrow2x^2+2y^2-16x+32+16y+32=0\)
\(\Leftrightarrow2\left(y-4\right)^2+2\left(x+4\right)^2=0\)
=>y=4; x=-4
1/Dùng hệ số bất định: (ko chắc nha,mình mới lớp 7)
Gọi đa thức trên là Q(x).
Thu gọn đa thức lại,ta được: \(Q\left(x\right)=x^4+30x^3+200x^2+1440x+2304\)
Giả sử \(Q\left(x\right)=\left(x^2+ax+48\right)\left(x^2+bx+48\right)\)
\(=x^4+bx^3+48x^2+ax^3+abx^2+48ax+48x^2+48bx+2304\)
Thu gọn lại,ta được: \(Q\left(x\right)=x^4+\left(a+b\right)x^3+\left(ab+96\right)x^2+\left(48a+48b\right)x+2304\)
Đồng nhất hệ số hai vế: \(\hept{\begin{cases}a+b=30\\ab+96=200\\48\left(a+b\right)=1440\end{cases}}\)
Từ a + b = 30 suy ra a = 30 - b.
Suy ra \(ab+96=b\left(30-b\right)+96=200\Rightarrow b=4\)
Suy ra a = 26.
Suy ra \(Q\left(x\right)=\left(x^2+26x+48\right)\left(x^2+4x+48\right)\)
\(=\left(x+2\right)\left(x+24\right)\left(x^2+4x+48\right)\)
Đề bài tương đương với \(2x^2+2y^2+2xy-2x+2y+2=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
\(M=x^{2020}+y^{2020}+2020^{x+y}=1^{2020}+\left(-1\right)^{2020}+2020^{1-1}=1+1+1=3\)
x2 + y2 + xy - x + y + 1 = 0
<=> 2( x2 + y2 + xy - x + y + 1 ) = 2.0
<=> 2x2 + 2y2 + 2xy - 2x + 2y + 2 = 0
<=> ( x2 + 2xy + y2 ) + ( x2 - 2x + 1 ) + ( y2 + 2y + 1 ) = 0
<=> ( x + y )2 + ( x - 1 )2 + ( y + 1 )2 = 0 (*)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\\\left(x-1\right)^2\\\left(y+1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x+y=0\\x-1=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
=> x = 1 ; y = -1
Thế vào M ta được
M = 12020 + (-1)2020 + 20201-1
= 1 + 1 + 1
= 3
a.Ta có:\(2x^2-4xy+4y^2+2x+1=0\)
\(\Rightarrow\left[x^2-2x\left(2y\right)+\left(2y\right)^2\right]+\left(x^2+2x+1\right)=0\)
\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi x-2y=0 và x+1=0
Suy ra x=-1;y=-1/2
b.Ta có:\(x^2-6x+y^2-6y+21=3\)
\(\Rightarrow\left(x^2-6x+9\right)+\left(y^2-6y+9\right)+3-3=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-3\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi x-3=y-3=0
Suy ra x=y=3
c.Ta có:\(2x^2-8x+y^2-2xy+16=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-4\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi:x-y=x-4=0
Suy ra x=y=4
a) 2x2 - 4xy + 4y2 + 2x + 1 = 0
<=> x2 - 4xy + 4y2 + x2 + 2x + 1 = 0
<=> ( x - 2y )2 + ( x + 1 )2 = 0
<=> \(\hept{\begin{cases}x-2y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-\frac{1}{2}\end{cases}}\)
b) x2 - 6x + y2 - 6y + 21 = 3
<=> x2 - 6x + y2 - 6y + 21 - 3 = 0
<=> x2 - 6x + y2 - 6y + 18 = 0
<=> x2 - 6x + 9 + y2 - 6y + 9 = 0
<=> ( x - 3 )2 + ( y - 3 )2 = 0
<=> \(\hept{\begin{cases}x-3=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)
c) 2x2 - 8x + y2 - 2xy + 16 = 0
<=> x2 - 2xy + y2 + x2 - 8x + 16 = 0
<=> ( x - y )2 + ( x - 4 )2 = 0
<=> \(\hept{\begin{cases}x-y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\end{cases}}\)
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)
\(=x^{15}-7x^{14}-x^{14}+7x^{13}+x^{13}-7x^{12}+...\)
\(-7x^2-x^2+7x+x-5\)
\(=x^{14}\left(x-7\right)-x^{13}\left(x-7\right)+...-x\left(x-7\right)+\left(x-7\right)+2\)
\(=2\)
Gọi 3 số tự nhiên liên tiếp là a; a + 1; a + 2
Theo đề, ta có: \(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)
\(\Leftrightarrow a^2+3a+2-a^2-a=50\)
\(\Leftrightarrow2a+2=50\Leftrightarrow a+1=25\Leftrightarrow a=24\)
Vậy 3 số đó là 24; 25; 26