K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Đáp án A

21 tháng 9 2019

Đáp án A

22 tháng 10 2017

Cách 1: Áp dụng công thức

- Với hình nón cụt có các bán kính các đáy là r1, r2, đường sinh l và chiều cao h thì :

Sxq= π(r1+ r2).l

V = 1/3πh(r12+ r22+ r1 r2)

Như vậy :

Diện tích xung quanh hình nón cụt thì bằng tích của số π với tổng hai bán kính và với đường sinh.

Thể tích của hình nón cụt thì bằng 1/3 tích của số π với đường cao h và tổng bình phương các bán kính cộng thêm tích của hai bán kính .

Cách 2: Vì hình nón cụt được cắt ra từ hình nón nên ta có thể tính

V(nón cụt )=V(nón lớn )-V(nón nhỏ )

S(xq nón cụt )=S(xq nón lớn )-S(xq nón nhỏ )

26 tháng 7 2018

Cách 1: Áp dụng công thức

- Với hình nón cụt có các bán kính các đáy là r 1 ,   r 2 , đường sinh l và chiều cao h thì :

S X q = π r 1 + r 2 ⋅ 1 V = 1 / 3 π h r 1 2 + r 2 2 + r 1 r 2

Như vậy :

Diện tích xung quanh hình nón cụt thì bằng tích của số π với tổng hai bán kính và với đường sinh.

Thể tích của hình nón cụt thì bằng 1/3 tích của số π với đường cao h và tổng bình phương các bán kính cộng thêm tích của hai bán kính .

Cách 2: Vì hình nón cụt được cắt ra từ hình nón nên ta có thể tính

V(nón cụt )=V(nón lớn )-V(nón nhỏ )

S(xq nón cụt )=S(xq nón lớn )-S(xq nón nhỏ )

10 tháng 7 2018

23 tháng 6 2018

a, V = 9706π c m 3 ≈ 9,7l

b, S = π(81+ 23 554 ) ≈ 622,36

8 tháng 6 2018

a, Dung tích của xô là:  V = 1 3 πh r 1 2 + r 1 r 2 + r 2 2

với r 1  = 5cm, r 2  = 10cm; h = 20cm

Thay số liệu và tính toán ta được V = 3663 c m 3

b, Tính được đường sinh của xô dạng hình nón cụt là l = 20,6cm

Diện tích tôn để làm xô mà không kể diện tích các chỗ ghép là S = S x q + S 1 = π r 1 + r 2 l + πr 1 2  với S 1  là diện tích đáy nhỏ của đáy dưới của xô

Thay số vào và tính toán ta được S = 1048,76 c m 2

AH
Akai Haruma
Giáo viên
16 tháng 6 2021

Lời giải:

 

Diện tích xung quanh hình nón:

$\pi (r+R).l=\pi (6+3).4=36\pi$ (cm vuông)

Diện tích toàn phần:

$36\pi+\pi r^2+\pi R^2=36\pi +\pi.3^2+\pi. 6^2=81\pi$ (cm vuông)

Thể tích:

Chiều cao hình nón: $\sqrt{4^2-(6-3)^2}=\sqrt{7}$ (cm)

$\frac{1}{3}\pi (r^2+R^2+r.R)h=\frac{1}{3}\pi (3^2+6^2+3.6).\sqrt{7}=21\sqrt{7}\pi$ (cm khối)