Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E = 5-x/x-2 nguyên khi
5 - x ⋮ x - 2
=> x - 2 + 7 ⋮ x - 2
=> 7 ⋮ x - 2
=> x - 2 thuộc Ư(7)
\(E=\frac{-x+5}{x-2}=\frac{-x}{x}+\frac{5}{x-2}=\frac{5}{x-2}-1\)
Để E đạt GTNN thì \(\frac{5}{x-2}\)cũng phải nhỏ nhất
=>x-2 là số nguyên âm lớn nhất
=>x-2=-1
x=1
Vậy Min C=-6 và x=1
\(\frac{5-x}{x-2}=\frac{5-x-2+2}{x-2}=\frac{5-2-x+2}{x-2}=\frac{\left(5-2\right)-\left(x-2\right)}{x-2}=\frac{5-2}{x-2}-\frac{x-2}{x-2}=\frac{3}{x-2}-1\)
Để \(\frac{5-x}{x-2}\)lớn nhất thì \(\frac{3}{x-2}\)lớn nhất. do đó x-2 nhỏ nhất và \(x-2\ge0\) \(\Rightarrow x-2=1\Rightarrow x=3\)
Vậy khi x=3 thì E đạt giá trị lớn nhất là \(\frac{5-3}{3-2}=\frac{2}{1}=2\)
a) A=-9x2+24x+1=-9x2+24x-16+17
=-9x2+12x+12x-16+17
=-3x.(3x-4)+4.(3x-4)+17
=(3x-4)(-3x+4)+17
=-(3x-4)(3x-4)+17
=-(3x-4)2+17 \(\le\) 17 (với mọi x)
Dấu "=" xảy ra khi x=4/3
Vậy GTLN của A là 17 tại x=4/3
Câu b đề phải là tìm GTLN chứ nhỉ
Ta có: x2-5x+7= \(x^2-\frac{5}{2}x-\frac{5}{2}x+\frac{25}{4}+\frac{3}{4}=x.\left(x-\frac{5}{2}\right)-\frac{5}{2}.\left(x-\frac{5}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{5}{2}\right)\left(x-\frac{5}{2}\right)+\frac{3}{4}=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)(với mọi x)
=>\(B=\frac{2016}{x^2-5x+7}\le\frac{2016}{\frac{3}{4}}=2688\)(với mọi x)
Dấu "=" xảy ra khi x=5/2
Vậy GTLN của B là 2688 tại x=5/2
a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)
b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)
c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)
\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)
e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)
\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1
Bài 2:
a)\(P=9-2\left|x-3\right|\)
Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)
\(\Rightarrow-2\left|x-3\right|\le0\)
\(\Rightarrow9-2\left|x-3\right|\le9\)
Khi x=3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(Q=\left|x-2\right|+\left|x-8\right|\)
\(=\left|x-2\right|+\left|8-x\right|\)
\(\ge\left|x-2+8-x\right|=6\)
Khi \(2\le x\le8\)
Cái câu 1 ý , chỗ a,d-bc=2009 có ý j ?
Câu 2 : sao cho ?
=> đề ko rõ ràng , bạn sửa lại đi , người ta nhìn vào đọc ko hiểu đề => ko làm được
a. Để \(\frac{x+2}{x-1}\) có nghĩa thì \(x-1\ne0\Leftrightarrow x\ne1\)
b. Thay số vào rồi tính là ra nhé bạn.
c. \(f\left(x\right)=\frac{1}{4}\)
\(\frac{x+2}{x-1}=\frac{1}{4}\)
4(x + 2) = x - 1
4x + 8 = x - 1
4x - x = -1 - 8
3x = -9
x = -3
d. \(f\left(x\right)\in Z\)
\(\Rightarrow\frac{x+2}{x-1}\in Z\)
\(\Rightarrow\frac{x-1+3}{x-1}\in Z\)
\(\Rightarrow1+\frac{3}{x-1}\in Z\)
\(\Rightarrow\frac{3}{x-1}\in Z\)
Để \(\frac{3}{x-1}\in Z\) thì \(3⋮x-1\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\text{±}1;\text{±}3\right\}\)
Ta có bảng sau:
x - 1 | -1 | -3 | 1 | 3 |
x | 0 | -2 | 2 | 4 |
Vậy để f(x) có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)
e. f(x) > 0
\(\Leftrightarrow\frac{x+2}{x-1}>0\)
\(\Rightarrow1+\frac{3}{x-1}>0\)
\(\Rightarrow\frac{3}{x-1}>-1\)
\(\Rightarrow x-1>-3\)
\(\Rightarrow x>-2\)
\(A=\frac{x^2-10x+36}{x-5}=\frac{x^2-10x+25+9}{x-5}\) \(=\frac{\left(x-5\right)^2+9}{x-5}=x-5+\frac{9}{x-5}\)
để \(A\in Z\)
<=> \(\frac{9}{x-5}\in Z\)mà \(x\in Z\)
=> \(x-5\inƯ\left(9\right)\)
=> \(x-5\in\left(1;-1;3;-3;9;-9\right)\)
=> \(x\in\left(6;4;8;2;14;-4\right)\)
học tốt
bạn nhấn vào đúng 0 sẽ có đáp án