Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ với pt tổng quát: \(ax^2+bx+c=0\) có \(\Delta=b^2-4ac\)
Nếu như vậy thì: \(1.x^2+6x+m\) có \(\Delta=6^2-4m\)chứ?
Riêng mình thì bài này mình dùng delta phẩy cho lẹ:
Lời giải
Để pt \(x^2+6x+m=0\) có 2 nghiệm phân biệt thì:
\(\Delta'=\left(\frac{b}{2}\right)^2-ac=3^2-m>0\)
\(\Leftrightarrow m< 9\)
\(f\left(a,b\right)=a^2+8b^2-6ab+14a-40b+48=3\)
\(\Leftrightarrow f\left(a,b\right)=a^2+8b^2-6ab+14a-40b+45=0\)
\(\Leftrightarrow a^2+2a\left(7-3b\right)+\left(8b^2-40b+45\right)=0\)
Xét \(\Delta'=\left(7-3b\right)^2-\left(8b^2-40b+45\right)=b^2-2b+4=\left(b-1\right)^2+3>0\)
Vậy PT luôn có hai nghiệm phân biệt.
Vì a,b nguyên nên \(b^2-2b+4=k^2\left(k\in N\right)\)
\(\Leftrightarrow k^2-\left(b-1\right)^2=3\Leftrightarrow\left(k-b+1\right)\left(k+b-1\right)=3\)
Xét các trường hợp với k-b+1 và k+b-1 là các số nguyên được :
(b;k) = (0;2) ; (0;-2) ; (2;2) ; (2;-2)
Thay lần lượt các giá trị của b vào f(a,b) = 3 để tìm a.
Vậy : (a;b) = (-9;0) ; (-5;0) ; (-3;2) ; (1;2)
lkjhgfgy6tyur65445676t 7 777676r64576556756777777777777/.,mnbvfggjhyjuhjtyj324345
tam giác
Delta và delta' á, e năm nay ms vô lớp 9 nên chưa bt mà bọn e có dùng delta để giải pt no nguyên r