Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BEI+góc BDI=180 độ
=>BEID nội tiếp
góc CEI+góc CFI=180 độ
=>CEIF nội tiếp
b: BEID nội tiếp
=>góc IDE=góc IBE=1/2*sđ cung CI
CEIF nội tiếp
=>góc IEF=góc ICF=1/2*sđ cung CI
=>góc IDE=góc IEF
BEID nội tiếp
=>góc IED=góc IBD=1/2*sđ cung IB
CEIF nội tiếp
=>góc IFE=góc ICE=1/2*sđ cung IB=góc IED
Xét ΔIDE và ΔIEF có
góc IDE=góc IEF
góc IED=góc IFE
=>ΔIDE đồng dạng với ΔIEF
Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )
a) Chứng minh rằng ABOC là tứ giác nội tiếp
b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC
c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC
chứng minh tứ giác OBDK nội tiếp:
dựa vào góc DBK=DOK (vì hai góc cùng chắn cung DK)
vậy, ta cần chứng minh DBK=DOK
đặt giao của OM với AB là H
dễ dàng chứng minh: DBK=BOA=1/2 BOC (1)
có M thuộc (O) và tiếp tuyến CD của M nên chứng minh được tam giác OBD=OMD (ch,cgv)
=> góc BOD=DOM và MOE=COE (chứng minh tương tự)
=> DOM+EOM=DOE=1/2BOM+1/2MOC=1/2BOC (2)
từ (1),(2) => DOK=KBD (đpcm)
a: góc BEI+góc BDI=180 độ
=>BEID nội tiếp
góc CEI+góc CFI=180 độ
=>CEIF nội tiếp
b: góc IED=góc IBD=1/2*sđ cung BI
góc IFE=góc ICE=1/2*sđ cung BI
=>góc IED=góc IFE
góc IDE=góc IBE=1/2*sđ cung IC
góc IEF=góc ICF=1/2*sđ cung IC
=>góc IDE=góc IEF
=>ΔIDE đồng dạng với ΔIEF