Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Ta có \(MA=MB\) (t/c hai tiếp tuyến cắt nhau)
\(OA=OB=R\)
\(\Rightarrow OM\) là trung trực AB hay OM vuông góc AB
AC là đường kính và B là điểm thuộc đường tròn \(\Rightarrow\widehat{ABC}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ABC}=90^0\Rightarrow AB\perp BC\)
\(\Rightarrow BC||OM\) (cùng vuông góc AB)
b.
Do MA là tiếp tuyến \(\Rightarrow AM\perp AC\) hay tam giác MAC vuông tại A
AC là đường kính và K thuộc đường tròn \(\Rightarrow\widehat{AKC}\) là góc nt chắn nửa đường tròn
\(\Rightarrow\widehat{AKC}=90^0\) hay AK là đường cao trong tam giác vuông MAC
Áp dụng hệ thức lượng:
\(AC^2=CK.CM\Rightarrow CK.CM=\left(2R\right)^2=4R^2\)
c.
Em có nhầm đề ko nhỉ, vì 2 góc này hiển nhiên bằng nhau, ko cần chứng minh, do 1 góc là góc nội tiếp và 1 góc là góc tạo bởi tiếp tuyến và dây cung, cùng chắn cung BK.
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
Hình bạn tự vẽ nhé!
Gọi I là trung điểm của DE.
Từ I dựng IH vuông góc với AB tại H.
Ta có: Ax//By
=> Tứ giác ABED là hình thang.
và ID = IE (I là trung điểm của DE)
OA = OB (O là tâm của đường tròn đường kính AB)
=> OI là đường trung bình của hinh thang ABED
=> OI//AD
=> SAOI = SDOI
=> 1/2.OA.IH = 1/2.DI.OC
Mà OI = OC
=> IH = DI = IE
Mà IH vuông góc với AB (cách lấy điểm H)
=> AB là tiếp tuyens của đường tròn đường kính DE.
b)" Dây cung ".......
Sorry viết nhầm
b) "dây cung đường tròn tâm O cắt đường tròn tâmO' "....