Cho đường tròn tâm O đường kính AB. Trên tiếp tuyến tại A của đườ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2024

A B C D E O G F H K I

a/

Ta có

\(\widehat{OAC}=\widehat{OGC}=90^o\)

=> A và G cùng nhìn OC dưới hai góc bằng nhau và bằng \(90^o\) => A và C thuộc đường trong đường kính OC => ACGO nội tiếp

Xét tg vuông OGF và tg vuông CAF có chung \(\widehat{AFC}\)

=> tg OGF đồng dạng với tg CAF (g.g.g)

\(\Rightarrow\dfrac{GO}{AC}=\dfrac{FO}{FC}\Rightarrow GO.FC=AC.FO\)

b/

Xét tứ giác nội tiếp ACGO có

\(\widehat{OCG}=\widehat{OAG}\) (góc nt cùng chắn cung GO)

EK//CO (gt) \(\Rightarrow\widehat{OCG}=\widehat{HEG}\) (góc so le trong)

\(\Rightarrow\widehat{OAG}=\widehat{HEG}\)

=> A và E cùng phía với GH; A và E cùng nhìn GH dưới 2 góc bằng nhau => AGHE là tứ giác nội tiếp

\(\widehat{BAE}=\widehat{HGE}\) (góc nt cùng chắn cung HE

Xét (O) có

\(\widehat{BAE}=\widehat{BDE}\) (Góc nt cùng chắn cung BE)

\(\Rightarrow\widehat{HGE}=\widehat{BDE}\) mà 2 góc trên ở vị trí đồng vị =>GH//KD (1)

Ta có

\(OG\perp DE\Rightarrow GD=GE\) (trong đường tròn đường thẳng đi qua tâm và vuông góc với dây cung thì chia đôi dây cung) (2)

Xét tg DEK từ (1) và (2) => HK=HE (trong tam giác đường thẳng // với 1 cạnh và đi qua trung điểm của 1 cạnh thì đi qua trung điểm cạnh còn lại)

 

13 tháng 2 2022

Hình gì vậy bạn ? Mà cũng làm gì vậy bạn ?

28 tháng 6 2021

A B O C D E M H K

a)Ta có: EA \(\perp\)AB (t/c tiếp tuyến) => \(\widehat{OAE}=90^0\)

       OD \(\perp\)EC (t/c tiếp tuyến) => \(\widehat{ODE}=90^0\)

Xét t/giác AODE có \(\widehat{OAE}+\widehat{ODE}=90^0+90^0=180^0\)

=> t/giác AODE nt đường tròn (vì tổng 2 góc đối diện  = 1800)

b) Xét \(\Delta\)EKD và \(\Delta\)EDB

có: \(\widehat{BED}\):chung

 \(\widehat{EDK}=\widehat{EBK}=\frac{1}{2}sđ\widebat{KD}\)

 => \(\Delta\)EKD ∽ \(\Delta\)EDB (g.g)

=> \(\frac{ED}{EB}=\frac{EK}{ED}\)=> ED2 = EK.EB (1)

Ta có: AE = ED (t/c 2 tt cắt nhau) => E thuộc đường trung trực của AD

 OA = OD = R => O thuộc đường trung trực của AD
=> EO là đường trung trực của ED => OE \(\perp\)AD

Xét \(\Delta\)EDO vuông tại D có DH là đường cao => ED2 = EK.EB (2)

Từ (1) và (2) => EH.EO = DK.EB => \(\frac{EH}{EB}=\frac{EK}{EO}\)

Xét tam giác EHK và tam giác EBO

có: \(\widehat{OEB}\): chung

 \(\frac{EH}{EB}=\frac{EK}{EO}\)(cmt)

=> tam giác EHK ∽ tam giác EBO (c.g.c)

=> \(\widehat{EHK}=\widehat{KBA}\)

c) Ta có: OM // AE (cùng vuông góc với AB) => \(\frac{OM}{AE}=\frac{MC}{EC}\)(hq định lí ta-lét)

=> OM.EC = AE.MC

Ta lại có: \(\frac{EA}{EM}-\frac{MO}{MC}=\frac{EA.MC-MO.EM}{EM.MC}=\frac{MO.EC-MO.EM}{EM.MC}=\frac{OM.MC}{EM.MC}=\frac{OM}{EM}\)

Mặt khác: OM // AE => \(\widehat{MOE}=\widehat{OEA}\)(slt)

mà \(\widehat{AEO}=\widehat{OEM}\)(t/c 2 tt cắt nhau)

=> \(\widehat{MOE}=\widehat{MEO}\) => tam giác OME cân tại M => OM = ME

=> \(\frac{OM}{EM}=1\)

=> \(\frac{EA}{EM}-\frac{OM}{MC}=1\)

30 tháng 5 2021

https://thi.tuyensinh247.com/de-thi-thu-vao-lop-10-mon-toan-lan-3-phong-gddt-gia-loc-2016-c31a28113.html

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0

mk giúp đc ko ?

25 tháng 4 2020

mik ko giúp đc

chúc hok tốt nha b

23 tháng 1 2021

Bài này căng đấy =))

C E B A D O I H

a) Do AB là tiếp tuyến của (O) với B là tiếp điểm (gt)

nên : \(AB\perp OB\)( tc tiếp tuyến )

\(\Rightarrow\widehat{ABO}=90^o\)(1)

Do H là trung điểm của dây DE (gt)

nên : \(OH\perp DE\)( liên hệ giữa đường kính và dây )

\(\Rightarrow\widehat{AHO}=90^o\)(2)

- Xét tứ giác ABOH ta có :

+) \(\widehat{ABO}\)và  \(\widehat{AHO}\)là hai góc đối diện

+) \(\widehat{ABO}+\widehat{AHO}=90^o+90^o=190^o\)( do (1) và (2))

=> ABOH là tứ giác nội tiếp 

=> 4 điểm A , B , O , H thuộc cùng 1 đường tròn ( đpcm )

b) Ta có : +) \(\widehat{B_1}\)là góc giữa tia tiếp tuyến và dây cung chắn cung \(\widehat{BD}\)của (O)

+) \(\widehat{E_1}\)là góc nội tiếp chắn cung \(\widehat{BD}\)của (O)

\(\Rightarrow\widehat{B_1}=\widehat{E_1}=\frac{1}{2}sđ\widebat{BD}\)( tính chất )

Xét 2 tam giác : ABD và AEB có :

\(\widehat{B_1}=\widehat{E_1}\left(cmt\right)\)

\(\widehat{A}\)chung

\(\Rightarrow\Delta ABD~\Delta AEB\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{BD}{EB}\)( tỉ số đồng dạng )

\(\Rightarrow\frac{AB}{AE}=\frac{BD}{BE}\left(đpcm\right)\)

23 tháng 1 2021

P/s : câu a) có nhiều cách chứng minh khác nữa bạn nhé . Bạn làm cách này có thể hay hơn là vì những gì đã nói ở trên về phương pháp trình bày và đồng thời chứng minh cũng áp dụng được cho nhiều bài khác ( Khi \(\widehat{ABO}\)và \(\widehat{AHO}\)không phải là những góc 90 độ )

28 tháng 11 2017

Bài 2:

O A B C E D M

Ta thấy EB // AC nên \(\frac{EB}{MA}=\frac{ED}{DA}\Rightarrow AM.ED=EB.DA\)  (1)

Do EB//AC nên \(\widehat{BCA}=\widehat{CBE}\Rightarrow\widebat{EC}=\widebat{CB}\)

Vậy thì \(2.\widehat{DMC}=\widebat{BC}-\widebat{DC}=\widebat{EC}+\widebat{EB}-\widebat{DC}=\left(\widehat{CB}-\widebat{DC}\right)+\widebat{EB}=\widebat{ED}=2.\widehat{DCE}\)

\(\Rightarrow\widehat{DMC}=\widehat{DCE}\)

Mà \(\widehat{DEC}=\widehat{DCM}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)

\(\Rightarrow\Delta EDC\sim\Delta CDM\left(g-g\right)\Rightarrow\frac{ED}{CD}=\frac{EC}{CM}\Rightarrow CM.ED=CD.EC\)    (2)

Từ (1) và (2) ta thấy, muốn chứng minh CM = MA, ta chỉ cần chứng minh EB.DA = CD.EC

Lại có \(\widebat{CE}=\widebat{CB}\Rightarrow CE=CB\)

Vậy ta cần chứng minh: EB.DA = CD.BC

Ta có \(\widehat{DAC}=\frac{\widebat{EC}-\widebat{DC}}{2}=\frac{\widebat{BC}-\widebat{DC}}{2}=\frac{\widebat{DB}}{2}=\widehat{DCB}\)

Vậy nên ta có ngay \(\Delta DBC\sim\Delta DCA\left(g-g\right)\Rightarrow\frac{BD}{CD}=\frac{BC}{CA}\Rightarrow BC.CD=BD.CA\left(3\right)\)

Ta dễ dàng thấy ngay \(\Delta BDA\sim\Delta EBA\left(g-g\right)\Rightarrow\frac{BD}{EB}=\frac{DA}{BA}=\frac{DA}{CA}\Rightarrow EB.DA=BD.CA\left(4\right)\)

Từ (3) và (4) ta có \(EB.DA=BC.CD\)

Từ đó suy ra MC = MA hay M là trung điểm của AC (đpcm).

28 tháng 11 2017

Ai giúp mik nốt bài 1 với ạ