Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B O C D E M H K
a)Ta có: EA \(\perp\)AB (t/c tiếp tuyến) => \(\widehat{OAE}=90^0\)
OD \(\perp\)EC (t/c tiếp tuyến) => \(\widehat{ODE}=90^0\)
Xét t/giác AODE có \(\widehat{OAE}+\widehat{ODE}=90^0+90^0=180^0\)
=> t/giác AODE nt đường tròn (vì tổng 2 góc đối diện = 1800)
b) Xét \(\Delta\)EKD và \(\Delta\)EDB
có: \(\widehat{BED}\):chung
\(\widehat{EDK}=\widehat{EBK}=\frac{1}{2}sđ\widebat{KD}\)
=> \(\Delta\)EKD ∽ \(\Delta\)EDB (g.g)
=> \(\frac{ED}{EB}=\frac{EK}{ED}\)=> ED2 = EK.EB (1)
Ta có: AE = ED (t/c 2 tt cắt nhau) => E thuộc đường trung trực của AD
OA = OD = R => O thuộc đường trung trực của AD
=> EO là đường trung trực của ED => OE \(\perp\)AD
Xét \(\Delta\)EDO vuông tại D có DH là đường cao => ED2 = EK.EB (2)
Từ (1) và (2) => EH.EO = DK.EB => \(\frac{EH}{EB}=\frac{EK}{EO}\)
Xét tam giác EHK và tam giác EBO
có: \(\widehat{OEB}\): chung
\(\frac{EH}{EB}=\frac{EK}{EO}\)(cmt)
=> tam giác EHK ∽ tam giác EBO (c.g.c)
=> \(\widehat{EHK}=\widehat{KBA}\)
c) Ta có: OM // AE (cùng vuông góc với AB) => \(\frac{OM}{AE}=\frac{MC}{EC}\)(hq định lí ta-lét)
=> OM.EC = AE.MC
Ta lại có: \(\frac{EA}{EM}-\frac{MO}{MC}=\frac{EA.MC-MO.EM}{EM.MC}=\frac{MO.EC-MO.EM}{EM.MC}=\frac{OM.MC}{EM.MC}=\frac{OM}{EM}\)
Mặt khác: OM // AE => \(\widehat{MOE}=\widehat{OEA}\)(slt)
mà \(\widehat{AEO}=\widehat{OEM}\)(t/c 2 tt cắt nhau)
=> \(\widehat{MOE}=\widehat{MEO}\) => tam giác OME cân tại M => OM = ME
=> \(\frac{OM}{EM}=1\)
=> \(\frac{EA}{EM}-\frac{OM}{MC}=1\)
https://thi.tuyensinh247.com/de-thi-thu-vao-lop-10-mon-toan-lan-3-phong-gddt-gia-loc-2016-c31a28113.html
Bài này căng đấy =))
C E B A D O I H
a) Do AB là tiếp tuyến của (O) với B là tiếp điểm (gt)
nên : \(AB\perp OB\)( tc tiếp tuyến )
\(\Rightarrow\widehat{ABO}=90^o\)(1)
Do H là trung điểm của dây DE (gt)
nên : \(OH\perp DE\)( liên hệ giữa đường kính và dây )
\(\Rightarrow\widehat{AHO}=90^o\)(2)
- Xét tứ giác ABOH ta có :
+) \(\widehat{ABO}\)và \(\widehat{AHO}\)là hai góc đối diện
+) \(\widehat{ABO}+\widehat{AHO}=90^o+90^o=190^o\)( do (1) và (2))
=> ABOH là tứ giác nội tiếp
=> 4 điểm A , B , O , H thuộc cùng 1 đường tròn ( đpcm )
b) Ta có : +) \(\widehat{B_1}\)là góc giữa tia tiếp tuyến và dây cung chắn cung \(\widehat{BD}\)của (O)
+) \(\widehat{E_1}\)là góc nội tiếp chắn cung \(\widehat{BD}\)của (O)
\(\Rightarrow\widehat{B_1}=\widehat{E_1}=\frac{1}{2}sđ\widebat{BD}\)( tính chất )
Xét 2 tam giác : ABD và AEB có :
\(\widehat{B_1}=\widehat{E_1}\left(cmt\right)\)
\(\widehat{A}\)chung
\(\Rightarrow\Delta ABD~\Delta AEB\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{BD}{EB}\)( tỉ số đồng dạng )
\(\Rightarrow\frac{AB}{AE}=\frac{BD}{BE}\left(đpcm\right)\)
P/s : câu a) có nhiều cách chứng minh khác nữa bạn nhé . Bạn làm cách này có thể hay hơn là vì những gì đã nói ở trên về phương pháp trình bày và đồng thời chứng minh cũng áp dụng được cho nhiều bài khác ( Khi \(\widehat{ABO}\)và \(\widehat{AHO}\)không phải là những góc 90 độ )
Bài 2:
O A B C E D M
Ta thấy EB // AC nên \(\frac{EB}{MA}=\frac{ED}{DA}\Rightarrow AM.ED=EB.DA\) (1)
Do EB//AC nên \(\widehat{BCA}=\widehat{CBE}\Rightarrow\widebat{EC}=\widebat{CB}\)
Vậy thì \(2.\widehat{DMC}=\widebat{BC}-\widebat{DC}=\widebat{EC}+\widebat{EB}-\widebat{DC}=\left(\widehat{CB}-\widebat{DC}\right)+\widebat{EB}=\widebat{ED}=2.\widehat{DCE}\)
\(\Rightarrow\widehat{DMC}=\widehat{DCE}\)
Mà \(\widehat{DEC}=\widehat{DCM}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)
\(\Rightarrow\Delta EDC\sim\Delta CDM\left(g-g\right)\Rightarrow\frac{ED}{CD}=\frac{EC}{CM}\Rightarrow CM.ED=CD.EC\) (2)
Từ (1) và (2) ta thấy, muốn chứng minh CM = MA, ta chỉ cần chứng minh EB.DA = CD.EC
Lại có \(\widebat{CE}=\widebat{CB}\Rightarrow CE=CB\)
Vậy ta cần chứng minh: EB.DA = CD.BC
Ta có \(\widehat{DAC}=\frac{\widebat{EC}-\widebat{DC}}{2}=\frac{\widebat{BC}-\widebat{DC}}{2}=\frac{\widebat{DB}}{2}=\widehat{DCB}\)
Vậy nên ta có ngay \(\Delta DBC\sim\Delta DCA\left(g-g\right)\Rightarrow\frac{BD}{CD}=\frac{BC}{CA}\Rightarrow BC.CD=BD.CA\left(3\right)\)
Ta dễ dàng thấy ngay \(\Delta BDA\sim\Delta EBA\left(g-g\right)\Rightarrow\frac{BD}{EB}=\frac{DA}{BA}=\frac{DA}{CA}\Rightarrow EB.DA=BD.CA\left(4\right)\)
Từ (3) và (4) ta có \(EB.DA=BC.CD\)
Từ đó suy ra MC = MA hay M là trung điểm của AC (đpcm).
A B C D E O G F H K I
a/
Ta có
\(\widehat{OAC}=\widehat{OGC}=90^o\)
=> A và G cùng nhìn OC dưới hai góc bằng nhau và bằng \(90^o\) => A và C thuộc đường trong đường kính OC => ACGO nội tiếp
Xét tg vuông OGF và tg vuông CAF có chung \(\widehat{AFC}\)
=> tg OGF đồng dạng với tg CAF (g.g.g)
\(\Rightarrow\dfrac{GO}{AC}=\dfrac{FO}{FC}\Rightarrow GO.FC=AC.FO\)
b/
Xét tứ giác nội tiếp ACGO có
\(\widehat{OCG}=\widehat{OAG}\) (góc nt cùng chắn cung GO)
EK//CO (gt) \(\Rightarrow\widehat{OCG}=\widehat{HEG}\) (góc so le trong)
\(\Rightarrow\widehat{OAG}=\widehat{HEG}\)
=> A và E cùng phía với GH; A và E cùng nhìn GH dưới 2 góc bằng nhau => AGHE là tứ giác nội tiếp
\(\widehat{BAE}=\widehat{HGE}\) (góc nt cùng chắn cung HE
Xét (O) có
\(\widehat{BAE}=\widehat{BDE}\) (Góc nt cùng chắn cung BE)
\(\Rightarrow\widehat{HGE}=\widehat{BDE}\) mà 2 góc trên ở vị trí đồng vị =>GH//KD (1)
Ta có
\(OG\perp DE\Rightarrow GD=GE\) (trong đường tròn đường thẳng đi qua tâm và vuông góc với dây cung thì chia đôi dây cung) (2)
Xét tg DEK từ (1) và (2) => HK=HE (trong tam giác đường thẳng // với 1 cạnh và đi qua trung điểm của 1 cạnh thì đi qua trung điểm cạnh còn lại)