Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
là góc tạo bởi tiếp tuyến BT và dây cung BP.
=
sđ
(1)
là góc nội tiếp chắn cung
=
sđ
(2)
Lại có =
(∆OAP cân) (3)
Từ (1), (2), (3), suy ra =
![](https://rs.olm.vn/images/avt/0.png?1311)
Kiến thức áp dụng
Trong một đường tròn:
+ Số đo của góc nội tiếp bằng một nửa số đo của cung bị chắn.
+ Số đo của góc tạo bởi tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.
![](https://rs.olm.vn/images/avt/0.png?1311)
(Quá lực!!!)
E N A B C D O H L
Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.
Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).
Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.
Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).
-----
Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).
Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)
B 1 ^ l à g ó c t ạ o b ở i t i ế p t u y ế n B T v à d â y B P
⇒ B 1 ^ = 1 2 . s đ P B ⏜
Xét tam giác APO có OA=OP=R
⇒ ∆ A P O c â n t ạ i O ⇒ A 1 ^ = P B T ^ (1)
Xét tam giác APO cân tại O ⇒ A 1 ^ = P 1 ^ (2)
Từ (1) và (2) suy ra B 1 ^ = P 1 ^ h a y A P O ^ = P B T ^