K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác CDOE có \(\widehat{CDO}+\widehat{CEO}=180^0\)

nên CDOE là tứ giác nội tiếp

b:

Xét (O) có

CD là tiếp tuyến

CE là tiếp tuyến

Do đó: CD=CE và CO là phân giác của góc DCE

Ta có: ΔODC vuông tại D

mà DB là đường trung tuyến

nên DB=OB=BC

Xét ΔOBD có OB=OD=DB

nên ΔOBD đều

=>\(\widehat{DOB}=60^0\)

\(\Leftrightarrow\widehat{DCO}=30^0\)

=>\(\widehat{DCE}=60^0\)(Do CO là phân giác của góc DCE)

Xét ΔDCE có CD=CE

nên ΔCDE cân tại C

mà \(\widehat{DCE}=60^0\)

nên ΔCDE đều

19 tháng 5 2022

Lời giải 1 bài toán tương tự - Dài và khó

Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube

29 tháng 5 2017

GIỐNG ĐỀ MÌNH THẬT!!!

22 tháng 3 2019

a ) Xét tứ giác CDOE ta có :

\(\left\{{}\begin{matrix}\widehat{CDO}=90^0\\\widehat{CEO}=90^0\end{matrix}\right.\) ( Tiếp tuyến vuông góc với bán kính )

\(\Rightarrow\widehat{CDO}+\widehat{CEO}=180^0\)

\(\Rightarrow CDOE\) là tứ giác nội tiếp ( đpcm )

b ) Ta có : \(OC=2R=12cm\)

Theo tỉ số lượng giác cho tam giác COD :

\(\widehat{DCO}=\sin^{-1}\left(\frac{OD}{OC}\right)=\sin^{-1}\left(\frac{6}{12}\right)=30^0\)

\(\Rightarrow\widehat{DCE}=2\widehat{DCO}=2.30^0=60^0\)

Mà tam giác DCE cân tại C do \(CD=CE\)

Tam giác cân có góc ở đỉnh bằng 60 độ nên DCE là tam giác đều .

c ) Xét \(\Delta CDM\)\(\Delta CND\) ta có :

\(\left\{{}\begin{matrix}\widehat{DCM}:chung\\\widehat{MDC}=\widehat{DNC}\left(=\frac{1}{2}sđ\stackrel\frown{MD}\right)\end{matrix}\right.\)

\(\Rightarrow\Delta CDM\sim\Delta CND\left(g-g\right)\)

\(\Rightarrow\frac{CD}{CN}=\frac{CM}{CD}\)

\(\Rightarrow CD^2=CM.CN\left(đpcm\right)\)

6 tháng 5 2019

OC sao = 12 được ạ.
Vì đường kính nó là 6 mà chứ đâu phải bán kính là 6 đâu

 

20 tháng 11 2021

a, Vì CA = CM ( tc tiếp tuyến cắt nhau ) 

OA = OM = R 

=> OC là đường trung trực đoạn AM 

=> OC vuông AM 

^AMB = 900 ( góc nội tiếp chắn nửa đường tròn ) 

=> AM vuông MB (1)

Ta có : DM = DB ( tc tiếp tuyến cắt nhau ) 

OM = OB = R 

=> OD là đường trung trực đoạn MB 

=> OD vuông MB (2) 

Từ (1) ; (2) => OD // AM 

b, OD giao MB = {T}

OC giao AM = {U} 

Xét tứ giác OUMT có ^OUM = ^UMT = ^MTO = 900

=> tứ giác OUMT là hcn => ^UOT = 900 

Vì CD là tiếp tuyến (O) với M là tiếp điểm => ^OMD = 900 

Mặt khác : BD = DM ( tc tiếp tuyến cắt nhau ) 

CM = AC ( tc tiếp tuyến cắt nhau ) 

Xét tam giác COD vuông tại O, đường cao OM 

Ta có : \(OM^2=CM.MD\)hay \(OM^2=AC.BD\)=> R^2 = AC.BD 

c, Gọi I là trung điểm CD 

O là trung điểm AB 

khi đó OI là đường trung bình hình thang BDAC 

=> OI // AC mà AC vuông AB ( tc tiếp tuyến ) => OI vuông AB 

Xét tam giác COD vuông tại O, I là trung điểm => OI = IC = ID = R 

Vậy AB là tiếp tuyến đường tròn (I;CD/2) 

23 tháng 4 2018

a, HS tự chứng minh

b, HS tự chứng minh

c, DAEH vuông nên ta có: KE = KA = 1 2 AH

=> DAKE cân tại K

=>  K A E ^ = K E A ^

DEOC cân  ở O =>  O C E ^ = O E C ^

H là trực tâm => AH  ^ BC

Có  A E K ^ + O E C ^ = H A C ^ + A C O ^ = 90 0

(K tâm ngoại tiếp) => OE ^ KE

d, HS tự làm