Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a ) Xét tứ giác CDOE ta có :
\(\left\{{}\begin{matrix}\widehat{CDO}=90^0\\\widehat{CEO}=90^0\end{matrix}\right.\) ( Tiếp tuyến vuông góc với bán kính )
\(\Rightarrow\widehat{CDO}+\widehat{CEO}=180^0\)
\(\Rightarrow CDOE\) là tứ giác nội tiếp ( đpcm )
b ) Ta có : \(OC=2R=12cm\)
Theo tỉ số lượng giác cho tam giác COD :
\(\widehat{DCO}=\sin^{-1}\left(\frac{OD}{OC}\right)=\sin^{-1}\left(\frac{6}{12}\right)=30^0\)
\(\Rightarrow\widehat{DCE}=2\widehat{DCO}=2.30^0=60^0\)
Mà tam giác DCE cân tại C do \(CD=CE\)
Tam giác cân có góc ở đỉnh bằng 60 độ nên DCE là tam giác đều .
c ) Xét \(\Delta CDM\) và \(\Delta CND\) ta có :
\(\left\{{}\begin{matrix}\widehat{DCM}:chung\\\widehat{MDC}=\widehat{DNC}\left(=\frac{1}{2}sđ\stackrel\frown{MD}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta CDM\sim\Delta CND\left(g-g\right)\)
\(\Rightarrow\frac{CD}{CN}=\frac{CM}{CD}\)
\(\Rightarrow CD^2=CM.CN\left(đpcm\right)\)
OC sao = 12 được ạ.
Vì đường kính nó là 6 mà chứ đâu phải bán kính là 6 đâu

có facebook ko ib vs mk .tại hơi lười nên cx ko muốn viết ra trên olm
a: Xét tứ giác CDOE có \(\widehat{CDO}+\widehat{CEO}=180^0\)
nên CDOE là tứ giác nội tiếp
b:
Xét (O) có
CD là tiếp tuyến
CE là tiếp tuyến
Do đó: CD=CE và CO là phân giác của góc DCE
Ta có: ΔODC vuông tại D
mà DB là đường trung tuyến
nên DB=OB=BC
Xét ΔOBD có OB=OD=DB
nên ΔOBD đều
=>\(\widehat{DOB}=60^0\)
\(\Leftrightarrow\widehat{DCO}=30^0\)
=>\(\widehat{DCE}=60^0\)(Do CO là phân giác của góc DCE)
Xét ΔDCE có CD=CE
nên ΔCDE cân tại C
mà \(\widehat{DCE}=60^0\)
nên ΔCDE đều