Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A B x C E D M
a, xét tg AEO và CEO có : EO chung
^AEO = ^CEO = 90
OA = OC = r
=> Tg AEO = tg CEO (ch-cgv)
=> ^AOE = ^COE
xét tg MAO và tg MCO có : Mo chung
OA = OC = r
=> tg MAO = tg MCO (cg-c)
=> ^MAO = ^MCO
mà ^MAO = 90
=> ^MCO = 90 => OC _|_ MC
có C thuộc 1/2(o)
=> MC là tt của 1/2(o)
b, xét tứ giác MCOA có : ^MCO = ^MAO = 90
=> ^MCO + ^MAO = 180
=>MCOA nội tiếp
+ có D thuộc 1/(o) dk AB (gt) => ^ADB = 90 = ADM
có MEA = 90 do AC _|_ MO (Gt)
=> ^ADM = ^MEA = 90
=> MDEA nt
a:góc ABD=góc DCA
góc ABD=góc FAD(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)
góc FAD=góc CAD
=>góc ABD=góc CBD
=>BD là phân giác của góc ABE
mà góc ADB=90 độ
nên BD là đường cao
=>ΔBAE cân tại B
b: Xét ΔEAB có
AC,BD là các đường cao
AC cắt BD tại K
Do đó: K là trực tâm
=>EK vuông góc với BA
c: Xét ΔAKF có AD vừa là đường cao, vừa là phân giác
nên ΔAKF cân tại A
=>góc AKF=góc AFK=góc KFE
=>AK//FE
Xét tứ giác AKEF có
AK//FE
AF//KE
KE=KA
Do đó: AKEF là hình thoi
Ta có : (O;AB/2) = OB
(O;AB/2) = OA
Lại có : AD + DO = OA
OC + BC = OB
Vì OA = OB = R => AD + DO = OC + BC
mà BD > BC => OD < OC
=> AD > BC
A B O D C D
AC = BD (gt)
=> sđ cung AC = sđ cung BD (Trong đường tròn các cung có độ dài dây trương cung bằng nhau thì có số đo bằng nhau )
Ta có
sđ cung ACD = sđ cung AC + sđ cung CD
sđ cung CDB = sđ cung BD + sđ cung CD
=> sđ cung ACD = sđ cung CDB
\(\Rightarrow sđ\widehat{EAB}=sđ\widehat{EBA}\) (2 góc nội tiếp đường tròng chắn 2 cung CDB và cung ACD có số đo bằng nhau)
\(\Rightarrow\Delta EAB\) cân tại E
Ta có
OA = OB (bán kính (O))
=> OE là trung tuyến của tg EAB
=> \(OE\perp AB\) (trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao)
Vì 2 dây AC và BD bằng nhau ⇒ cách đều tâm O ⇒ OC = OD
△AOC = △BOD (c.c.c) ⇒ góc A = B
⇒ △ABE cân tại E mà EO là trung tuyến ứng với AB
⇒ EO vuông góc với AB tại O