K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

c) ký hiệu các góc QOB, BOF, FOM, MOC, COE, EOA, AOP lần lượt là O1, O2, O3, O4, O5, O6, O7

Dễ thấy O5+O6+O7=90 mà O6=O4+O5 nên suy ra 2O5+O4+O7=90 (1) 

tương tự 2O2+O1+O4=90 (vì O2=O3) (2). 

mặt khác O7=O1 vì cùng phụ với 2 góc P và Q là 2 góc bằng nhau

Từ đó ta có O2=O5

lại có O2+OFQ =90

O5+POE=90 suy ra OFQ =POE (dpcm)

d) tam giác PEO đồng dạng với tam giác QOF nên suy ra PE.QF=OP.OQ=OP^2

Áp dụng bđt Cosi ta có PE+QF>= 2 căn PE.QF=2.căn OP^2=2OP=PQ (dpcm)

26 tháng 4 2020

hi bạn nha bạn ten gì vậy bạn

2 tháng 6 2017

Ban oi ko co diem E, sai de roi

2 tháng 6 2017

a. Ta có : góc CAO = 90

góc CBO = 90
=> góc CAO + góc CBO = 180

=> Tứ giác AOBC nội tiếp

9 tháng 4 2018

Bạn có thể tham khảo ở đây :

Câu hỏi của Anh Bên - Toán lớp 9 - Học toán với OnlineMath

10 tháng 7 2017

Đường tròn

(bik vẽ hình mà k bik giải ^_^ pó tay r bạn​ :D )

19 tháng 5 2019

vex trường hợp đặc biết thách giải đc

 

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0