K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

1. Ta có ÐOMP = 900 ( vì PM ^ AB ); ÐONP = 900 (vì NP là tiếp tuyến ).

Như vậy M và N cùng nhìn OP dưới một góc bằng 900 => M và N cùng nằm trên đường tròn  đường kính OP => Tứ giác OMNP nội tiếp.

2. Tứ giác OMNP nội tiếp => ÐOPM = Ð ONM (nội tiếp chắn cung OM)

 Tam giác  ONC cân tại O vì có ON = OC = R => ÐONC = ÐOCN

=>  ÐOPM = ÐOCM.

Xét hai tam giác  OMC và MOP ta có ÐMOC = ÐOMP = 900; ÐOPM = ÐOCM => ÐCMO = ÐPOM lại có MO là cạnh chung => DOMC = DMOP => OC = MP. (1)

Theo giả thiết Ta có CD ^ AB; PM ^ AB => CO//PM (2).

Từ (1) và (2) => Tứ giác CMPO là hình bình hành.

3. Xét hai tam giác OMC và NDC ta có ÐMOC = 900 ( gt CD ^ AB); ÐDNC = 900 (nội tiếp chắn nửa đường tròn ) => ÐMOC =ÐDNC = 900 lại có ÐC là góc chung => DOMC ~DNDC

=>  => CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN =2R2không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M.

.

14 tháng 2 2017

Tự vẽ hình:

a) ta có: Nx là tiếp tuyến => \(\widehat{PNO}=90\)

d\(⊥\)AB=> \(\widehat{OMP}=90\)

=> tứ giác OMNP nội tiếp

b) Ta có: CO II MP ( cùng vuông góc với AB)

Tứ giác OMNP nội tiếp => \(\widehat{OPM}=\widehat{ONM}\) (1)

 Tam giác cân OCN ( OC=ON=R) có: \(\widehat{OCN}=\widehat{ONM}\) (2)

Từ (1), (2) => \(\widehat{OPM}=\widehat{OCM}\)(**)

Từ (*), (**) => OCMP là hình bình hành

c) Xét \(\Delta OCN\)là tam giác cân

và \(\Delta MCD\)là tam giác cân ( do C,D đối xứng nhau qua AB) có chung góc C

=> \(\Delta OCN\)đồng dạng \(\Delta MCD\)

=>\(\frac{CN}{CD}=\frac{OC}{CM}\Rightarrow CN.CM=OC.CD=2R^2=const\)

Vậy CN.CM không đổi (ĐPCM)

1: góc OMP=góc ONP=90 độ

=>OMNP nội tiếp

26 tháng 3 2023

loading...