K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2022

a: Xét (O) có

AB,CD là các dây

AB=CD
OI,OK lần lượt là khoảng cách từ O đến AB,CD

nên OI=OK

Xét ΔEIO vuông tại I và ΔEKO vuôg tại K có

EO chung

OI=OK

Do đó: ΔEIO=ΔEKO

b: EI=EK

OI=OK

DO đó: EO là đường trung trực của IK

c: EA+AI=EI

EC+CK=EK

mà EI=EK; AI=CK

nên EA=EC

=>ΔEAC cân tại E

c: Xét ΔEBD có EA/EB=EC/ED

nên AC//BD

Xét hình thang ACDB có

I,K lần lượt là trung điểm của AB,CD
nên IK là đường trung bình

=>AC+BD=2IK

19 tháng 1 2019

https://olm.vn/hoi-dap/detail/209918170486.html?pos=471764962964

14 tháng 5 2021

a. Xét (O) , có


CD \(\perp\)AB = {I}


=> \(\widehat{CIB}=90^o\Rightarrow\widehat{FIB}=90^o\) 

Có: \(\widehat{AEB}\)là góc nội tiếp chắn nửa đường tròn đường kính AB

\(\Rightarrow\widehat{AEB}=90^o\Rightarrow\widehat{IEB}=90^o\)

Xét tứ giác EFIB, có:

\(\widehat{FEB}+\widehat{FIB}=90^o+90^o=180^o\)

2 góc \(\widehat{FEB}\)và \(\widehat{FIB}\)là 2 góc đối nhau




=> EFIB là tứ giác nội tiếp (dhnb) (đpcm)

14 tháng 5 2021
b) ∆AFI ~ ∆ABE ( g.g ) => AF/AB = AI/AE => AF.AE = AI.AB Nên AF.AE-AI.AB = 0 c ) Nghĩ là đề sai vì nếu ngoại tiếp ∆ACE thì chỉ có tâm O thôi,nếu như đề đúng thì O1 sẽ trùng với O mất rồi
26 tháng 5 2019

bài này dễ mà

nhưng h tớ bận òi

tối hay khi nào rảnh giải cho

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em