K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Sửa đề: góc BAC=90 độ

Xét (O) có

IB,IA là các tiếp tuyến

Do đó: IB=IA

Xét (O') có

IA,IC là các tiếp tuyến

Do đó: IA=IC

Ta có: IB=IA

IA=IC

Do đó: IB=IC

=>I là trung điểm của BC

Xét ΔABC có

AI là đường trung tuyến

\(AI=\dfrac{BC}{2}\)

Do đó: ΔABC vuông tại A

=>\(\widehat{BAC}=90^0\)

2: Ta có: ΔACB vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

Xét tứ giác OBIA có \(\widehat{OBI}+\widehat{OAI}=90^0+90^0=180^0\)

nên OBIA là tứ giác nội tiếp

=>\(\widehat{OBA}=\widehat{OIA}\)

Xét tứ giác O'AIC có \(\widehat{O'AI}+\widehat{O'CI}=180^0\)

nên O'AIC là tứ giác nội tiếp

=>\(\widehat{O'IA}=\widehat{O'CA}\)

Ta có: \(\widehat{OBI}+\widehat{O'CI}=180^0\)

=>\(\widehat{OBA}+\widehat{CBA}+\widehat{BCA}+\widehat{O'CA}=180^0\)

=>\(\widehat{OBA}+\widehat{O'CA}=180^0-90^0=90^0\)

=>\(\widehat{OIA}+\widehat{O'IA}=90^0\)

=>\(\widehat{OIO'}=90^0\)

18 tháng 12 2022

loading...

a) Trong (O) có: KB,KM là hai tiếp tuyến cắt nhau tại K.

\(\Rightarrow KB=KM\left(1\right)\)

Trong (I) có: KC,KM là hai tiếp tuyến cắt nhau tại K.

\(\Rightarrow KC=KM\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow KB=KC\)

△BME nội tiếp đường tròn (O) đường kính BE.

⇒△BME vuông tại MM.

\(\Rightarrow\widehat{BME}=90^0\)

b) Ta có: K thuộc đường trung trực của BM (\(KB=KM\))

O thuộc đường trung trực của BM \(\left(OB=OM\right)\)

⇒OK là đường trung trực của BM mà OK cắt BM tại N.

⇒N là trung điểm BM.

- Ta có: K thuộc đường trung trực của CM (\(KC=KM\))

I thuộc đường trung trực của CM \(\left(IC=IM\right)\)

⇒IK là đường trung trực của CM mà IK cắt CM tại P.

⇒P là trung điểm IK và \(CM\perp IK\) tại P.

Xét △BCM có: N là trung điểm BM, P là trung điểm CM.

⇒NP là đường trung bình của △BCM.

⇒NP//CM.

c) *Hạ \(IH\perp OB\) tại H.

Xét tứ giác BCIH có: \(\widehat{HBC}=\widehat{BCI}=\widehat{BHI}=90^0\)

⇒BCIH là hình chữ nhật.

\(\Rightarrow BC=IH;IC=BH=r\)

Xét △ICK vuông tại C có IP là đường cao:

\(\Rightarrow IK.IP=IC^2=r^2\)

Xét △OHI vuông tại H có:

\(HI^2+OH^2=OI^2\)

\(\Rightarrow HI=\sqrt{OI^2-OH^2}=\sqrt{\left(r+R\right)^2-\left(r-R\right)^2}=\sqrt{4Rr}=2\sqrt{Rr}\)

Mà \(BC=HI\Rightarrow BC=2\sqrt{Rr}\left(1'\right)\)

Ta có: \(2\sqrt{IM.IO-IK.IP}=2\sqrt{r\left(r+R\right)-r^2}=2\sqrt{Rr}\left(2'\right)\)

\(\left(1'\right),\left(2'\right)\Rightarrow BC=2\sqrt{IM.IO-IK.IP}\)

 

29 tháng 12 2023

a: Xét (O) có

ID,IA là các tiếp tuyến

Do đó: IO là phân giác của góc DIA

=>\(\widehat{DIA}=2\cdot\widehat{OIA}\)

Xét (O') có

IA,IE là các tiếp tuyến

Do đó: IO' là phân giác của góc AIE

=>\(\widehat{AIE}=2\cdot\widehat{AIO'}\)

Ta có: \(\widehat{DIA}+\widehat{EIA}=180^0\)(hai góc kề bù)

=>\(2\left(\widehat{OIA}+\widehat{O'IA}\right)=180^0\)

=>\(2\cdot\widehat{OIO'}=180^0\)

=>\(\widehat{OIO'}=90^0\)

b: Xét (O) có

ID,IA là các tiếp tuyến

Do đó: ID=IA

Xét (O') có

IA,IE là các tiếp tuyến

Do đó: IA=IE

Ta có: IA=IE

ID=IA

Do đó: ID=IE

=>I là trung điểm của DE

=>I là tâm đường tròn đường kính DE

Xét ΔDAE có

AI là bán kính

\(AI=\dfrac{DE}{2}\)

Do đó: ΔADE vuông tại A

=>A nằm trên (I)

Xét (I) có

IA là bán kính

O'O\(\perp\)IA tại A

Do đó: OO' là tiếp tuyến của (I)

=>O'O là tiếp tuyến của đường tròn đường kính DE

 

1 tháng 10 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Theo tính chất hai tiếp tuyến cắt nhau ta được IA = IB, IA = IC.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Theo tính chất hai tiếp tuyến cắt nhau ta có IO, IO' là các tia phân giác của hai góc kề bù AIB, AIC nên:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) ΔOIO' vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:

    IA2 = AO.AO' = 9.4 = 36

=> IA = 6 (cm)

Vậy BC = 2.IA = 2.6 = 12 (cm)

15 tháng 7 2020

1 2 1 2 3 4 B I C O A O'

a) Theo tính chất hai tiếp tuyến cắt nhau ta được IA = IB, IA = IC .

Tam giác ABC có đường trung tuyến \(AI=\frac{1}{2}BC\)nên là tam giác vuông

Vậy \(\widehat{BAC}=90^o\left(đpcm\right)\)

b) Theo tính chất hai tiếp tuyến cắt nhau ta có IO, IO' là các tia phân giác của hai góc kề bù AIB, AIC nên :

\(\widehat{OIO'}=\widehat{OIA}+\widehat{O'IA}=\frac{1}{2}\widehat{AIB}+\frac{1}{2}\widehat{AIC}=\frac{1}{2}\left(\widehat{AIB}+\widehat{AIC}\right)\)

Vậy : \(\widehat{OIO'}=90^o\)

c) \(\Delta OIO'\) vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:

    IA2 = AO.AO' = 9 . 4 = 36

=> IA = 6 ( cm )

Vậy BC = 2 . IA = 2 . 6 = 12 (cm)

CÂU 1 :tìm giá trị m để đồ thị 3 hàm số : y=(m-1)x+3;y=x-1 và y=2x+3 cắt nhau tại 1 điểm CÂU 2: cho tam giác ABC cân tại A .Vẽ đường tâm D đường kính BC cắt AB,AC lần lượt ở E và F. Các dây BF và CE cắt nhau tại H a)Cho BC=10cm; AB=13cm.tính AD b)chứng minh A,E,H,F thuộc 1 đường tròn .xác định tâm O của đường tròn đó c)chứng minh DE là tiếp tuyến của đường tròn tâm O CÂU 3: cho đường tròn...
Đọc tiếp

CÂU 1 :tìm giá trị m để đồ thị 3 hàm số : y=(m-1)x+3;y=x-1 và y=2x+3 cắt nhau tại 1 điểm CÂU 2: cho tam giác ABC cân tại A .Vẽ đường tâm D đường kính BC cắt AB,AC lần lượt ở E và F. Các dây BF và CE cắt nhau tại H a)Cho BC=10cm; AB=13cm.tính AD b)chứng minh A,E,H,F thuộc 1 đường tròn .xác định tâm O của đường tròn đó c)chứng minh DE là tiếp tuyến của đường tròn tâm O CÂU 3: cho đường tròn (O;R), đường kính AB,dây cung BC=R. a)tính các cạnh và các góc chưa biết của tam giác ABC theo R b)đường thẳng qua O vuông góc vs AC cắt tiếp tuyến tại A của đường tròn (O) ở D.chứng minh OD là đường trung trực của đoạn AC.Tam giác ADC là tam giác gì?Vì sao? c)chứng minh DC là tiếp tuyến của đường tròn (O) CÂU 4:cho 2 đường tròn (O) và (O') tiếp xúc ngoài tại A. kẻ tiếp tuyến chung ngoài BC, B thuộc (O),C thuộc (O').Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I a)CMR: GÓC BAC=90 độ b) tính số đo góc OIO' c)tính độ dài BC,biết OA=5cm;O'A=4cm

0
13 tháng 12 2019

b) Ta có: Đề kiểm tra Toán 9 | Đề thi Toán 9

6 tháng 1 2018

Theo tính chất hai tiếp tuyến cắt nhau ta có IO, IO' là các tia phân giác của hai góc kề bù AIB, AIC nên:

O I O ' ^ = O I A ^ + O ' I A ^ = 1 2 A I B ^ + 1 2 A I C ^ = 1 2 A I B ^ + A I C ^

Vậy O I O ' ^ = 90 o

9 tháng 5 2021

) Theo tính chất hai tiếp tuyến cắt nhau ta được IA = IB, IA = IC.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Theo tính chất hai tiếp tuyến cắt nhau ta có IO, IO' là các tia phân giác của hai góc kề bù AIB, AIC nên:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) ΔOIO' vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:

    IA2 = AO.AO' = 9.4 = 36

=> IA = 6 (cm)

Vậy BC = 2.IA = 2.6 = 12 (cm)

A B C O' O I 4 9

Bài làm

a) Ta thấy: BC là tiếp tuyến chung ngoài và tiếp tuyến chung trong của hai đường tròn (O') và (O) cắt nhau tại I

=> CI = IA = IB (theo tính chất hai tiếp tuyến cắt nhau)

Xét tam giác ABC có: IA = 1/2BC 

=> Tam giác ABC vuông tại A

Do đó: góc BAC = 90o (đpcm)

b) Ta thấy: O'I là tia phân giác của CO'O (theo tính chất hai tiếp tuyến cắt nhau)

=> \(\widehat{IO'O}=\frac{1}{2}\widehat{CO'O}\Rightarrow2\widehat{IO'O}=\widehat{CO'O}\)

Ta lại thấy: OI là tia phân giác của BOO' (theo tính chất hai tiếp tuyến cắt nhau)

=> \(\widehat{IOO'}=\frac{1}{2}\widehat{BOO'}\Rightarrow2\widehat{IOO'}=\widehat{BOO'}\)

Xét tứ giác O'CBO có: 

\(\widehat{O'CB}+\widehat{CBO}+\widehat{B\text{OO}'}+\widehat{\text{OO}'C}=360^0\)(tổng 4 góc của tứ giác)

Hay \(90^0+90^0+2\widehat{IO'O}+2\widehat{IOO'}=360^0\)

=> \(2\left(\widehat{IO'O}+\widehat{IOO'}\right)=360^0-90^0-90^0=180^0\)

=> \(\widehat{IO'O}+\widehat{IOO'}=\frac{180^0}{2}=90^0\)\

Xét tam giác O'IO có:

\(\widehat{IO'O}+\widehat{IOO'}+\widehat{O'IO}=180^0\)(Tổng ba góc trong tam giác)

Hay \(90^0+\widehat{\text{OIO}'}=180^0\)

=> \(\widehat{\text{OIO}'}=180^0-90^0=90^0\)

Vậy góc OIO' = 90o 

c) Xét tam giác O'IO vuông tại I có:

Đường cao IA

Theo hệ thức lượng trong tam giác:

Ta có: IA2 = OA * O'A

hay IA2 = 4 * 9

=> IA = 6 (cm)

Mà IA = IC = IB = 6 (cm)

=> IC + IB = BC

hay BC = 6 + 6 = 12 (cm)

Vậy BC = 12cm