Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. có góc B cộng góc C bằng 180 độ ( tiế vậy nó nội tip tuyến ĐT) vậy nó nội tiếp
2. xét 2 tam giác ABE và tam giác AFB chứng minh nó đồng dạng (g,g), vì góc A chung, góc F bằng góc ABE = 1/2 Sđ cung BE. rồi lập tì số đồng dạng là được.
3. Chưa làm được. nếu bạn làm được rối thông tin cho mình nhé. cảm ơn
Lời giải 1 bài toán tương tự - Dài và khó
Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube
a) Tam giác vuông ABO và ACO có chung cạnh huyền AO nên O, B, A, C cùng thuộc đường tròn đường kính AO.
b) Theo tính chất hai tiếp tuyến cắt nhau, ta có AB = AC nên ABC là tam giác cân tại A.
Lại có AO là phân giác nên đồng thời là đường trung tuyến. Vậy thì AO đi qua H hay A, H, O thảng hàng.
Theo liên hệ giữa góc ở tâm và góc nội tiếp cùng chắn một cung, ta có \(\widehat{KDC}=\frac{\widehat{BOC}}{2}\)
Theo tính chất hai tiếp tuyến cắt nhau ta cũng có: \(\widehat{COA}=\frac{\widehat{BOC}}{2}\)
Suy ra \(\widehat{KDC}=\widehat{COA}\)
Vậy thì \(\Delta KDC\sim\Delta COA\left(g-g\right)\Rightarrow\frac{CK}{AC}=\frac{CD}{AO}\Rightarrow AC.CD=CK.AO\)
c) Ta thấy \(\widehat{ABN}=\widehat{NBC}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung chắn các cung bằng nhau)
Vậy nên BN là phân giác góc ABC.
Lại có AN là phân giác góc BAC nên N là tâm đường tròn nội tiếp tam giác ABC.
d) Gọi J là trực tâm tam giác ABC. Ta có ngay \(JC\perp AB;BJ\perp AC\)
Vậy thì BO // JC ; BJ // OC
Suy ra tứ giác JBOC là hình bình hành.
Lại có OB = OC nên JBOC là hình thoi.
Từ đó ta có JB = JC = OB = OC = R.
Vậy khi A di chuyển trên tia By cố định thì BJ = R hay J thuộc đường tròn tâm B, bán kính R.
a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp đường tròn đường kính AO
Tâm I là trung điểm của AO
b: Xét ΔABO có I,M lần lượt là trung điểm của AO,AB
=>MI là đường trung bình của ΔABO
=>MI//BO
Xét ΔAMI và ΔABO có \(\dfrac{AM}{AB}=\dfrac{AI}{AO}\left(=\dfrac{1}{2}\right)\) và góc MAI chung
nên ΔAMI~ΔABO
=>\(\dfrac{AM}{AB}=\dfrac{AI}{AO}\)
=>\(AM\cdot AO=AB\cdot AI\)
c: Gọi H là trung điểm của AM
Xét ΔCMA có
G là trọng tâm
H là trung điểm của AM
Do đó: C,G,H thẳng hàng và \(CG=\dfrac{2}{3}CH\)
Ta có: CG+GH=CH
=>\(GH=HC-\dfrac{2}{3}HC=\dfrac{1}{3}HC\)
Ta có: H là trung điểm của AM
=>\(HA=HM=\dfrac{AM}{2}=\dfrac{BM}{2}\)
Ta có: HM+MB=HB
=>\(HB=\dfrac{1}{2}MB+MB=\dfrac{3}{2}MB\)
=>\(\dfrac{HM}{HB}=\dfrac{\dfrac{1}{2}MA}{\dfrac{3}{2}MA}=\dfrac{1}{3}\)
Xét ΔHCB có \(\dfrac{HM}{HB}=\dfrac{HG}{HC}\left(=\dfrac{1}{3}\right)\)
nên MG//BC