K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Vì MC là tiếp tuyến của (O)

nen ΔOCM vuông tại C

b: Xét (O) có

góc MCA là góc tạo bởi tiếp tuyến MC và dây cung CA

góc ADC là góc nội tiếp chắn cung CA

Do đó: góc MCA=góc ADC

a: Vì MC là tiếp tuyến của (O)

nen ΔOCM vuông tại C

b: Xét (O) có

góc MCA là góc tạo bởi tiếp tuyến MC và dây cung CA

góc ADC là góc nội tiếp chắn cung CA

Do đó: góc MCA=góc ADC

26 tháng 11 2023

c: Xét (O) có

ΔMKD nội tiếp

MD là đường kính

Do đó: ΔMKD vuông tại K

=>MK\(\perp\)KD tại K

=>MK\(\perp\)AD tại K

Xét ΔMDA vuông tại M có MK là đường cao

nên \(AK\cdot AD=AM^2\left(1\right)\)

Xét ΔAOM vuông tại M có MH là đường cao

nên \(AH\cdot AO=AM^2\left(2\right)\)

Từ (1) và (2) suy ra \(AK\cdot AD=AH\cdot AO\)

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Xét ΔABC vuông tại C có CH là đường cao

nên \(AH\cdot AB=AC^2\left(1\right)\)

Xét ΔMAB vuông tại A có AC là đường cao

nên \(MC\cdot BC=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot AB=MC\cdot BC\)

27 tháng 12 2017

b) MN = AN = 1/2 AC (đường trung tuyến ứng với cạnh huyền trong tam giác AMC vuông tại M)

 tam giác AON = tam giác MON (c.c.c)

=> góc OMN = 90đ hay OM vuông góc NM => NM là tiếp tuyến

c) có NM Là tiếp tuyến (câu b)

=> góc O1= góc O2 , góc O3 = góc O4 (t/c hai tiếp tuyến cắt nhau)

có O1+O2+O3+O4 = 180đ

=> O2+O3 = 90đ

=> tam giác NOD vuông tại O

Xét tam giác vuông NOD, đường cao OM

=> tam giác OMN đồng dạng với tam giác DMO

=> \(\frac{NM}{OM}=\frac{OM}{MD}\)

=>\(\frac{AN}{OM}=\frac{OM}{DB}\)

=> AN.BD=\(R^2\)

d) có AN.BD=\(R^2\)

=> 2AN . BD = 2 R.R

=>AC.BD = AB . OA

=>\(\frac{AC}{AB}=\frac{OA}{BD}\)

=> tam giác AOC đồng dạng với tam giác BDA

=>góc AOC = góc ADB

Gọi K là giao điểm của AD và OC

=> tam giác AOK đồng dạng ADB (g.g)

=>góc OKA = góc DBA = 90đ

=> \(AD\perp OC\)