K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2015

Vả lại phần b thiếu đề bài.

7 tháng 9 2023

a) Để chứng minh tứ giác DMBN là hình bình hành, ta cần chứng minh hai cặp cạnh đối nhau của tứ giác là bằng nhau và hai đường chéo cắt nhau tại trung điểm.

Ta có MN là dây bất kì qua trung điểm H của đường kính AB, nên MN song song với AB và có độ dài bằng nhau.Vì AA' vuông góc với MN tại I, nên AI là đường phân giác của góc MAN. Tương tự, AI' là đường phân giác của góc MBN. Do đó, AI và AI' cắt nhau tại trung điểm D của BI.Vì MN song song với AB và có độ dài bằng nhau, cùng với việc AI và AI' cắt nhau tại D, ta có thể kết luận rằng tứ giác DMBN là hình bình hành.

b) Để chứng minh D là trung điểm của AA', ta cần chứng minh AD = AD' và AI = AI'.

Vì D là trung điểm của BI, nên BD = ID.Vì AI và AI' là đường phân giác của góc MAN và góc MBN, nên AI = MI và AI' = NI.Vì MN là dây bất kì qua trung điểm H của đường kính AB, nên MN song song với AB và có độ dài bằng nhau. Do đó, MI = NI.Vì BD = ID và AI = MI = NI, ta có thể kết luận rằng D là trung điểm của AA'.

Vậy, ta đã chứng minh được cả hai câu a) và b).

28 tháng 9 2015

 

Câu 1: Nối OI ta có

+ Xét tam giác OMN có

OM=ON (bán kính đường tròn) => tam giác OMN cân (tam giác có hai cạnh bên bằng nhau là t/g cân)

MI=NI (đề bài) => OI là trung tuyến thuộc cạnh MN

=> OI vuông góc MN (trong tam giác cân trung tuyến thuộc cạnh đáy đồng thời là đường cao của tam giác cân)

+ Ta có

AA' vuông góc MN

OI vuông góc MN (cmt)

=> OI//AA'

+ Xét tam giác ABD có

OA=OB (bán kính đường tròn)

OI//AD (chứng minh trên OI//AA')

=> BI=DI (đường thẳng // cạnh đáy và đi qua trung điểm của 1 cạnh bên thì cũng đi qua trung điểm của cạnh bên còn lại)

Mà MI=NI

=> DMNB là hbh (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Câu 2:

+ Xét tam giác OBD có

HO=HB (đề bài)

Bi=DI (c/m trên)

=> HI là đường trung bình của tam giác OBD (đường thẳng đi qua trung điểm hai cạn bên 1 t/g là đường trung bình)

=> HI//OD

Mà HI vuông góc AA'

=> OD vuông góc AA'

=> AD=A'D (Bán kính vuông góc với dây cung thì chia đôi dây cung tại điểm cắt nhau)

 

 

4 tháng 2 2019

O A C B D I M N E F P H

a) Kẻ đường kính DP của (O), ta có: BD vuông góc BP. Mà BD vuông góc AC nên BP // AC

=> (AP = (BC => (AB = (CP => AB = CP => AB2 + CD2 = CP2 + CD2 = DP2 = 4R2 (ĐL Pytagore)

Tương tự: AD2 + BC2 = 4R2 => ĐPCM.

b) Ta có: AB2 + BC2 + CD2 + DA2 = 4R2 + 4R2 = 8R2 

Ta lại có: AC2 + BD2 = IA2 + IB2 + IC2 + ID2 + 2.IB.ID + 2.IA.IC = AB2 + CD2 + 4.IE.IF

= 4R2 + 4(R+d)(R-d) = 4R2 + 4R2 - 4d2 = 8R2 - 4d2 

c) Gọi tia NI cắt AB tại H. Dễ thấy: ^BIH = ^NID = ^NDI = ^IAB = 900 - ^IBA => IN vuông góc AB.

C/m tương tự, ta có: IM vuông góc CD => ĐPCM.

d) Đường tròn (O): Dây AB, M trung điểm AB => OM vuông góc AB. Mà AB vuông góc IN => OM // IN

Tương tự ON // IM. Do đó: Tứ giác OMIN là hình bình hành (đpcm).

e) Vì tứ giác OMIN là hình bình hành nên MN đi qua trung điểm OI. Mà OI cố định NÊN trung điểm của OI cũng cố định nên ta có đpcm.

4 tháng 2 2019

Chậc -_- bài này mình làm được lâu rồi bạn à :V Nhưng cũng cảm ơn , tớ nhờ cậu bài khác mà :(

16 tháng 10 2021

a, Xét tam giác MON có : OM = ON = R

=> tam giác MON cân tại O, do OI vuông MN hay OI là đường cao 

đồng thời là đường phân giác => ^MOI = ^ION 

Vì BN là tiếp tuyến đường tròn (O) với N là tiếp điểm 

=> ON vuông BN hay ^ONB = 900 

Xét tam giác IOM và tam giác NOB có : 

^IOM = ^NOB ( cmt )

^OIM = ^ONB = 900

Vậy tam giác IOM ~ tam giác NOB ( g.g ) 

=> \(\frac{IO}{NO}=\frac{IM}{NB}\Rightarrow IO.NB=IM.NO\)

ý b sáng mai mình gửi nhé ;)) 

16 tháng 10 2021

 sửa hộ mình chỗ này nhé : ^OIM = ^ONB = 900 

b,  Vì I là trung điểm điểm OA => \(IO=IA=\frac{OA}{2}=\frac{R}{2}\)

Theo định lí Pytago tam giác OIM ta được : 

\(MI=\sqrt{OM^2-OI^2}=\sqrt{R^2-\frac{R^2}{4}}=\sqrt{\frac{3R^2}{4}}=\frac{\sqrt{3}R}{2}\)

Vì BM là tiếp tuyến đường tròn (O) và M là tiếp điểm 

=> OM vuông MB hay ^OMB = 900 => tam giác OMB vuông tại M 

Xét tam giác OMB vuông tại M, đường cao MI 

Áp dụng hệ thức : \(\frac{1}{OM^2}+\frac{1}{MB^2}=\frac{1}{MI^2}\Rightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{1}{\frac{3R^2}{4}}\)

\(\Leftrightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{4}{3R^2}\Leftrightarrow\frac{1}{MB^2}=\frac{4}{3R^2}-\frac{1}{R^2}=\frac{1}{3R^2}\Rightarrow MB=\sqrt{3}R\)

CM : tam giác OMB = tam giác ONB ( ch - gn ) 

Ta có : \(S_{OMNB}=S_{OMB}+S_{ONB}=2S_{OMB}=\frac{2.1}{2}.OM.MB\)

\(=R.\sqrt{3}R=\sqrt{3}R^2\)