K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

a) Ta thấy:$MN=MH$ (tính chất 2 tiếp tuyến cắt nhau)

$ON=OH=R$

$\Rightarrow OM$ là trung trực của $NH$

$\Rightarrow OM\perp NH$ (đpcm)

b) 

Vì $MH$ là tiếp tuyến của $(O)$ nên $MH\perp OH$

$\Rightarrow \triangle MOH$ vuông tại $H$

Áp dụng hệ thức lượng trong tam giác vuông đối với tam giác $MHO$ có đường cao $HI$ ta có:

$MI.MO=MH^2(1)$

Mặt khác, xét tam giác $MKH$ và $MHD$ có:

$\widehat{M}$ chung 

$\widehat{MHK}=\widehat{MDH}$ (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)

$\Rightarrow \triangle MKH\sim \triangle MHD$ (g.g)

$\Rightarrow \frac{MK}{MH}=\frac{MH}{MD}\Rightarrow MK.MD=MH^2(2)$

Từ $(1);(2)\Rightarrow MI.MO=MK.MD$ (đpcm)

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Hình vẽ:

undefined

22 tháng 3 2017

O M I D C A B

(Trình vẽ hình còn non!)

Ta có: \(\hept{\begin{cases}MA=MB\\OA=OB=R\end{cases}}\)(MA=MB vì tính chất 2 tiếp tuyến cắt nhau tại M)

\(\Rightarrow OM\)là trung trực của \(AB\)

\(\Rightarrow IA=IB\)và \(OM⊥AB\)tại \(I\)

Xét \(\Delta BCM\)và \(\Delta BDM\)có:

\(\hept{\begin{cases}\widehat{DMB}:chung\\\widehat{BDM}=\widehat{CBM}\end{cases}}\)(Góc BDM = góc CBM vì cùng chắn cung BC)

\(\Rightarrow\Delta BCM~\Delta DCM\left(g.g\right)\)

\(\Rightarrow\frac{MB}{MD}=\frac{MC}{MB}\)

\(\Rightarrow MB.MB=MC.MD\)

\(\Rightarrow MB^2=MC.MD\)

Xét \(\Delta OMB\)vuông tại \(B\), đường cao \(BI\)có:

\(MB^2=MI.MO\)

Mà: \(MB^2=MD.MC\left(cmt\right)\)

\(\Rightarrow MD.MC=MI.MO\left(đpcm\right)\)

1 tháng 5 2020

a.Vì MA,MB là tiếp tuyến của (O)

→ˆMAO=ˆMBO=90o→MAO^=MBO^=90o

→M,A,O,B→M,A,O,B thuộc đường tròn đường kình OM

b.Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I→MO⊥AB=I

→OA2=OI.OM→OA2=OI.OM

Vì OF⊥CM=EOF⊥CM=E

→ˆFAC=ˆFEC=90o→◊AFCE,◊MAEO→FAC^=FEC^=90o→◊AFCE,◊MAEO nội tiếp

→M,A,E,O,B→M,A,E,O,B cùng thuộc một đường tròn

→ˆFCA=ˆFEA=ˆFBO→FCA^=FEA^=FBO^

→FC→FC là tiếp tuyến của (O)

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

22 tháng 1 2021

O N H E M D P

a) MN là tiếp tuyến đường tròn (O) \(\Rightarrow\widehat{MNP}=90^o\)

DO = ON = OP => \(DO=\frac{1}{2}NP\Rightarrow\widehat{NDP}=90^o\)

- Aps dụng hệ thức lượng cho tam giác MNP vuông tại N đường cao ND , ta có :

MN2 = MD . MP ( đpcm )

b) Ta có : PE // OM => PE // OH

Mà O là trung điểm của NP => OH là đường trung bình của tam giác ENP

=> H là trung điểm NE

Vậy : HN = HE ( đpcm )

c) Theo ( c/m câu b ) : HN = HE => \(HE\perp OM\)

Áp dung hệ thức trong tam giác NMO vuông tại N , đường cao NH :

Ta có : ON2 = OM . OH => OP2 = OM . OH

\(\Rightarrow\frac{OP}{OM}=\frac{OH}{OP}\left(1\right)\)

- Xét 2 tam giác: OHP và OPM

có : \(\frac{OP}{OM}=\frac{OH}{OP}\left(theo\left(1\right)\right)\)

       \(\widehat{O}\)là góc chung

Do đó : \(\Delta OHP~\Delta OPM\left(c-g-c\right)\)

\(\Rightarrow\widehat{OPH}=\widehat{OMP}\left(đpcm\right)\)

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)