Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác KAOB có \(\widehat{KAO}+\widehat{KBO}=90^0+90^0=180^0\)
nên KAOB là tứ giác nội tiếp
2: Xét (O) có
\(\widehat{KAC}\) là góc tạo bởi tiếp tuyến AK và dây cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{KAC}=\widehat{ADC}\)
Xét ΔKAC và ΔKDA có
\(\widehat{KAC}=\widehat{KDA}\)
\(\widehat{AKC}\) chung
Do đó: ΔKAC đồng dạng với ΔKDA
=>\(\dfrac{KA}{KD}=\dfrac{KC}{KA}\)
=>\(KA^2=KC\cdot KD\)
Xét (O) có
KA,KB là các tiếp tuyến
Do đó: KA=KB
=>K nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OK là đường trung trực của AB
=>OK\(\perp\)AB tại M và M là trung điểm của AB
Xét ΔOAK vuông tại A có AM là đường cao
nên \(KM\cdot KO=KA^2\)
=>\(KA^2=KM\cdot KO=KC\cdot KD\)
a) Xét tứ giác KAOB có
\(\widehat{OAK}\) và \(\widehat{OBK}\) là hai góc đối
\(\widehat{OAK}+\widehat{OBK}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: KAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Cho đường tròn tâm OO bán kính OAOA. Điểm CC thuộc đoạn thẳng AOAO (CC khác AA và OO). Đường thẳng vuông góc với AOAO tại CC cắt đường tròn (O)(O) tại hai điểm DD và KK. Tiếp tuyến tại DD của đường tròn (O)(O) cắt đường thẳng AOAO tại EE. Tiếp tuyến tại AA của đường tròn (O)(O) cắt đường thẳng DEDE tại FF. Gọi HH là giao điểm của hai đường thẳng FOFO và DKDK.
Chứng minh các tứ giác AFDOAFDO và AHOKAHOK là tứ giác nội tiếp.
xet tu giac AFDO co: goc FAO=FDO=90(gt)
=> tu giac AFDO noi tiep ( tong 2 goc doi dien bang 180)
vi OA vuong goc voi DK tai C (gt) va D,K thuoc (O)
=> OC la duong trung truc cua DK
=> tam giac ODK can tai O
=> goc ODK = OKD (1)
Mat khac, ta lai co F nam ngoai (O);
FA va FD lan luot la cac tiep tuyen cua (O)
=> FO vuong goc voi AD
va ta thay DC vuong goc voi OA
nen H la truc tam cua tam giac OAD
=>AH vuong goc voi OD=> AH song song voi ED
=> goc HAO=DEO (dong vi) (2)
Ta thay goc DEO= 90- goc DOE (tong 3 goc trong tam giac DOE)
va goc ODK=90- goc DOE (tong 3 goc trong tam giac DOK)
=>goc ODK=DEO (3)
Tu (1);(2);(3)=> goc OAH=OKH
=>tu giac AHOK noi tiep
1) Ta có \(\widehat{ABO}=\widehat{ACO}=90độ\left(gt\right)\)
Do đó\(\widehat{ABO}+\widehat{ACO}=180độ\)
Nên tứ giác ABOC nội tiếp đường tròn đường kính AO
Tâm đường tròn ngoại tiếp tứ giác ABOC là trung điểm AO.
2) Xét ΔABD và ΔAEB có
\(\widehat{BAE}\)chung
\(\widehat{ABD}=\widehat{AEB}\)(góc tạo bởi tia tiếp tuyến và dây và góc nội tiếp cùng chắn \(\widebat{BD}\))
Nên ΔABD ΔAEB
Do đó \(\frac{AB}{AE}\)=\(\frac{AD}{AB}\)
Hay AB2= AE.AD