Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
là góc tạo bởi hai tiếp tuyến BA và dây cung BC của (O). Dây BC = R suy ra = và = .
= - = - = (tổng các góc của một tứ giác bằng )
+ ΔOBC có OB = OC = BC (= R)
⇒ ΔOBC là tam giác đều
+ là góc tạo bởi tiếp tuyến BA và dây BC
+ là góc tạo bởi tiếp tuyến AC và dây CB
+ ΔOBC có OB = OC = BC (= R)
⇒ ΔOBC là tam giác đều
+ là góc tạo bởi tiếp tuyến BA và dây BC
+ là góc tạo bởi tiếp tuyến AC và dây CB
Xét tam giác OBA có OB = OC = BC = R
Vậy tam giác OAB là tam giác đều
=> ^BOC = ^OBC = ^OCB = 600
Vì AB ; AC là tiếp tuyến đường tròn (O) với B;C là tiếp điểm
=> ^OBA = ^OCA = 900
=> ^ABC = ^OBA - ^OBC = 900 - 600 = 300
Do AB = AC ( tc tiếp tuyến cắt nhau )
=> ^ABC = ^ACB = 300
=> ^BAC = 1800 - 2^ABC = 1200
a) vì AD là tia phân giác \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAD}=\widehat{DAC}\)\(\Rightarrow\)D là điểm chính giữa BC
\(\Rightarrow OD\perp BC\)
Mà \(DE\perp OD\)
\(\Rightarrow BC//DE\)
b) Ta có : \(\widehat{DAC}=\widehat{DCI}=\frac{1}{2}sđ\widebat{CD}\)
\(\Rightarrow\widehat{KAD}=\widehat{KCI}\)
suy ra tứ giác ACIK nội tiếp
c) OD cắt BC tại H
Dễ thấy H là trung điểm BC nên HC = \(\frac{BC}{2}=\frac{\sqrt{3}}{2}R\)
Xét \(\Delta OHC\)vuông tại H có :
\(HC=OC.\sin\widehat{HOC}\Rightarrow\sin\widehat{HOC}=\frac{HC}{OC}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\widehat{HOC}=60^o\)
\(\Rightarrow\widehat{BOC}=120^o\)
\(\Rightarrow\widebat{BC}=120^o\)
P/s : câu cuối là tính số đo cung nhỏ BC mà sao có cái theo R. mình ko hiểu. thôi thì bạn cứ xem đi nha.
a: góc OBA+góc OCA=180 độ
=>ABOC nội tiếp
b: Xét ΔOCB co OB=OC=BC
nen ΔOBC đều
=>góc OBC=60 độ
=>góc ABC=30 độ
a, AD là phân giác B A C ^
=> D là điểm chính giữa B C ⏜ => OD ⊥ BC
Mà DE là tiếp tuyến => ĐPCM
b, E C D ^ = 1 2 s đ C D ⏜ = D A C ^ = B A D ^ => Đpcm
c, HC = P 3 2 => H O C ^ = 60 0 => B O C ^ = 120 0
=> l B C ⏜ = π . R . 120 0 180 0 = 2 3 πR
Chọn đáp án A.
Góc là góc tạo bởi tia tiếp tuyến và dây cung chắn cung BC nên:
+ ΔOBC có OB = OC = BC (= R)
⇒ ΔOBC là tam giác đều
+ là góc tạo bởi tiếp tuyến BA và dây BC
+ là góc tạo bởi tiếp tuyến AC và dây CB
Kiến thức áp dụng
+ Trong một đường tròn, số đo của cung là số đo của góc ở tâm chắn cung đó.
+ Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.