K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2021

1: Ta có \(\widehat{KAO}=\widehat{KMO}=90^o\) nên tứ giác KAOM nội tiếp.

2: Theo hệ thức lượng trong tam giác vuông ta có \(OI.OK=OA^2=R^2\)

3: Phần thuận: Dễ thấy H thuộc KI.

Ta có \(\widehat{AHO}=90^o-\widehat{HAI}=\widehat{AMK}=\widehat{AOK}\) nên tam giác AHO cân tại A.

Do đó AH = AO = R.

Suy ra H thuộc (A; R) cố định.

Phần đảo cm tương tự.

Vậy...

24 tháng 4 2023

https://www.youtube.com/watch?v=u4X117g7vFo

a: Xét tứ giác KAOM có 

\(\widehat{KAO}+\widehat{KMO}=180^0\)

Do đó: KAOM là tứ giác nội tiếp

b: Xét (O) có

KA là tiếp tuyến

KM là tiếp tuyến

Do đó: KA=KM

hay K nằm trên đường trung trực của AM(1)

Ta có: OA=OM

nên O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra OK là đường trung trực của AM

hay OK\(\perp\)AM

Xét ΔOAK vuông tại A có AI là đường cao

nên \(OI\cdot OK=OA^2\)

18 tháng 12 2016

Mình chỉ nói gợi ý thôi, bạn tự phát triển nhé:

Câu a)

  • CM: \(MO\)song song với \(NB\).
  • CM: tam giác \(MAO\) và \(NOB\) bằng nhau.
  • CM: \(OMNB\) là hình bình hành.

Câu b)

  • CM: \(MAON\)là hình chữ nhật.
  • CM: \(H\) là giao của \(MO\) và \(AN\)
  • Gọi \(D\) là hình chiếu của \(H\) lên \(AB\). CM: \(D\) là trung điểm \(AO\).
  • CM: \(H\) di động trên đường cố định.
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
8 tháng 6 2017

a, HS tự làm

b, Ta có OP ⊥ AM, BMAM => BM//OP

c, chứng minh ∆AOP = ∆OBN => OP=BN

lại có BN//OP do đó OPNB là hình bình hành

d, Ta có ONPI, PMJO mà PM ∩ ON = I => I là trực tâm ∆POJ => JIPO(1)

Chứng minh PAON hình chữ nhật => K trung điểm PO

Lại có  A P O ^ = O P I ^ = I O P ^ => ∆IPO cân tại I => IKPO (2)

Từ (1),(2) => J,I,K thẳng hàng

2 tháng 1 2021

Vì sao A P O ^ = O P I ^ = I O P ^ v bn???