Cho đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Ax, lấy P trên Ax (AP > R)....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

a, HS tự làm

b, Ta có OP ⊥ AM, BMAM => BM//OP

c, chứng minh ∆AOP = ∆OBN => OP=BN

lại có BN//OP do đó OPNB là hình bình hành

d, Ta có ONPI, PMJO mà PM ∩ ON = I => I là trực tâm ∆POJ => JIPO(1)

Chứng minh PAON hình chữ nhật => K trung điểm PO

Lại có  A P O ^ = O P I ^ = I O P ^ => ∆IPO cân tại I => IKPO (2)

Từ (1),(2) => J,I,K thẳng hàng

2 tháng 1 2021

Vì sao A P O ^ = O P I ^ = I O P ^ v bn???

 

17 tháng 4 2018

a, Xét tứ giác APMO có

^PAO + ^PMO = \(90^0\)+\(90^0\)=1800

mà ^PAO và ^PMO là 2 góc đối nhau

=> tứ giác APMO nội tiếp (đccm)

b, Có PA=PM (t/c 2 tiếp tuyến cắt nhau)

OA=OM (bán kính (O))

=> PO là đ.t.trực của AM => PO⊥AM (1)

Có ^AMB là góc nt chắn nửa (O) => ^AMB = \(90^0\) hay AM⊥MB (2)

Từ (1),(2) => PO//BM

c, Xét ΔPAO và ΔNOB có

^PAO= ^NOB=\(90^0\) (Ax là tt, ON⊥AB)

^POA= ^NBO ( PO//BM)

OA =OB

=> ΔPAO= ΔNOB (gcg)

=>PO=BN

mà PO//BN ( câu b)

=>POBN là hbh

d, Có POBN là hbh =>PN//OB

mà ON⊥OB

=> ON⊥PN (từ ⊥ đến //)

Xét ΔPJO có PM⊥OJ (PM là tt)

ON⊥CJ (cmt)

PM\(\cap\)ON =\(\left\{I\right\}\)

=> I là trực tâm △PJO

=>JI⊥PO

các bạn c/m IK⊥PO là ra nhé

có cái mị k ngoặc đc ( *thông cảm a*)

26 tháng 3 2018

a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.

Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:

\(BC.BM=AB^2=4R^2\)

b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA

Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)

\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)

Hay IC là tiếp tuyến tại C của nửa đường tròn.

c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:

\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)

Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.

Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\)   (1) 

Xét tam giác vuông MAB, theo Pi-ta-go ta có:

\(MB^2=MA^2+AB^2=MA^2+4R^2\)   (2)

Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)

d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)

Tương tự \(\widehat{CEO}=90^o\)

Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.

Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.

Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.

Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.

Vậy  đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.

12 tháng 10 2019

Câu cuối là gì nhờ 

A A A B B B M M M C C C D D D O O O H H H K K K E E E F F F I I I a/Vì C là giao điểm 2 tiếp tuyến (O) nên ta có AC=MC,^OCM=1/2 ^ACD

Tương tự thì BD=DM, ^ODC=1/2 ^BDC.Từ đó suy ra AC+BD=CM+DM=CD và ^COD=90

b/Từ kết quả ở câu a thì ta chỉ cần chứng minh CM.DM=R2=OM2

Ta dễ dàng chứng minh được đẳng thức trên vì ta có \(\Delta OCM~\Delta DOM\left(g.g\right)\)

c/Ta có OC là đường trung trực của AM nên suy ra AM vuông góc OC tại H,H là trung điểm AM

Lại có BM vuông góc với OD tại K,K là trung điểm BM và ^COD=90(cmt)

Suy ra OHMK là hcn

d/Từ câu c suy ra ngay OC//BM, mà O là trung điểm AB nên OC là đtb của tam giác ABE

Suy ra C là trung điểm AE

e/MF cắt HK thì phải 

Ta có tam giác AMF có HI//AF,H là trung điểm AM suy ra I là trung điểm MF

f/Gọi T là trung điểm CD, ta dễ thấy (COD) là (T,TO)

Mà ta có TO vuông góc với AB(tính chất đường tb hình thang)

g/ ghi đề dùm

13 tháng 10 2019

Đã sửa đề câu g rồi ạ

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Sửa đề: \(BC\cdot MC=AC^2\)

Xét ΔABM vuông tại A có AC là đường cao

nên \(CB\cdot CM=CA^2\)

c: ΔACM vuông tại C

mà CN là đường trung tuyến

nên NA=NC=NM

Xét ΔNAO và ΔNCO có

NA=NC

NO chung

AO=CO

Do đó: ΔNAO=ΔNCO

=>\(\hat{NAO}=\hat{NCO}\)

=>\(\hat{NCO}=90^0\)

=>NC là tiếp tuyến của (O)

d: Xét (O) có

DC,DB là các tiếp tuyến

Do đó: DC=DB và OD là phân giác của góc BOC

OD là phân giác của góc BOC

=>\(\hat{BOC}=2\cdot\hat{COD}\)

ΔNAO=ΔNCO

=>\(\hat{NOA}=\hat{NOC}\)

=>ON là phân giác của góc COA

=>\(\hat{COA}=2\cdot\hat{CON}\)

Ta có: \(\hat{BOC}+\hat{COA}=180^0\) (hai góc kề bù)

=>\(2\left(\hat{CON}+\hat{COD}\right)=180^0\)

=>\(2\cdot\hat{NOD}=180^0\)

=>\(\hat{NOD}=90^0\)

e: Sửa đề: Chứng minh \(AN\cdot BD=R^2\)

Xét ΔOND vuông tại O có OC là đường cao

nên \(CN\cdot CD=OC^2\)

=>\(NA\cdot BD=OC^2=R^2\)

f: Gọi K là trung điểm của ND

=>K là tâm đường tròn đường kính ND

ΔNOD vuông tại O

mà OK là đường trung tuyến

nên OK=KN=KD

=>K là tâm đường tròn ngoại tiếp ΔNOD

Xét hình thang ABDN có

K,O lần lượt là trung điểm của ND,AB

=>KO là đường trung bình của hình thang ABDN

=>KO//AN//BD

=>KO⊥AB tại O

Xét (K) có

KO là bán kính

AB⊥KO tại O

Do đó: AB là tiếp tuyến của (K)

=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODN

g:

\(\frac{BA}{AM}=\frac{2\cdot BO}{2\cdot AN}=\frac{BO}{AN}\)

\(BD\cdot AN=R^2\)

=>\(\frac{BD}{R}=\frac{R}{AN}\)

=>\(\frac{BD}{AO}=\frac{BO}{AN}\)

=>\(\frac{BD}{AO}=\frac{BA}{AM}\)

Xét ΔBAD vuông tại B và ΔAMO vuông tại A có

\(\frac{BA}{AM}=\frac{BD}{AO}\)

Do đó: ΔBAD~ΔAMO

=>\(\hat{BAD}=\hat{AMO}\)

\(\hat{BAD}+\hat{MAD}=\hat{BAM}=90^0\)

nên \(\hat{AMO}+\hat{MAD}=90^0\)

=>OM⊥AD tại I

h: xét tứ giác AICM có \(\hat{AIM}=\hat{ACM}=90^0\)

nên AICM là tứ giác nội tiếp đường tròn đường kính AM

mà N là trung điểm của AM

nên A,M,C,I cùng thuộc đường tròn (N)

6 tháng 9

Giả thiết:

  • \(\left(\right. O \left.\right)\) là nửa đường tròn đường kính \(A B\).
  • \(A x\) và \(B y\) là các tiếp tuyến với \(\left(\right. O \left.\right)\) tại \(A\) và \(B\).
  • \(M\) là điểm bất kỳ trên tia \(A x\).
  • \(M B\) cắt \(\left(\right. O \left.\right)\) tại \(C\).
  • \(N\) là trung điểm của \(A M\).
  • \(N C\) kéo dài cắt \(B y\) tại \(D\).
  • \(R\) là bán kính đường tròn \(\left(\right. O \left.\right)\).

a) Chứng minh tam giác \(A C B\) vuông tại \(C\)

Lời giải:

  • Vì \(A B\) là đường kính của \(\left(\right. O \left.\right)\), nên theo định lý đường kính, góc \(\hat{A C B} = 90^{\circ}\).

Cụ thể: điểm \(C\) nằm trên đường tròn \(\left(\right. O \left.\right)\) có đường kính \(A B\), nên tam giác \(A C B\) vuông tại \(C\).


b) Chứng minh: \(2 \cdot B C \cdot M C = A C^{2}\)

Phân tích:

  • \(M\) nằm trên tia tiếp tuyến \(A x\).
  • \(M B\) cắt đường tròn \(\left(\right. O \left.\right)\) tại \(C\).
  • Ta cần chứng minh tích đoạn thẳng \(B C\) nhân với \(M C\) nhân 2 bằng bình phương đoạn \(A C\).

Để chứng minh điều này, ta sẽ sử dụng các tính chất về tiếp tuyến, đường kính và tỉ lệ đoạn thẳng trong tam giác, hoặc định lý Ptolemy, hoặc các hệ quả của tiếp tuyến và dây cung.


a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Sửa đề: \(BC\cdot MC=AC^2\)

Xét ΔABM vuông tại A có AC là đường cao

nên \(CB\cdot CM=CA^2\)

c: ΔACM vuông tại C

mà CN là đường trung tuyến

nên NA=NC=NM

Xét ΔNAO và ΔNCO có

NA=NC

NO chung

AO=CO

Do đó: ΔNAO=ΔNCO

=>\(\hat{NAO}=\hat{NCO}\)

=>\(\hat{NCO}=90^0\)

=>NC là tiếp tuyến của (O)

d: Xét (O) có

DC,DB là các tiếp tuyến

Do đó: DC=DB và OD là phân giác của góc BOC

OD là phân giác của góc BOC

=>\(\hat{BOC}=2\cdot\hat{COD}\)

ΔNAO=ΔNCO

=>\(\hat{NOA}=\hat{NOC}\)

=>ON là phân giác của góc COA

=>\(\hat{COA}=2\cdot\hat{CON}\)

Ta có: \(\hat{BOC}+\hat{COA}=180^0\) (hai góc kề bù)

=>\(2\left(\hat{CON}+\hat{COD}\right)=180^0\)

=>\(2\cdot\hat{NOD}=180^0\)

=>\(\hat{NOD}=90^0\)

e: Sửa đề: Chứng minh \(AN\cdot BD=R^2\)

Xét ΔOND vuông tại O có OC là đường cao

nên \(CN\cdot CD=OC^2\)

=>\(NA\cdot BD=OC^2=R^2\)

f: Gọi K là trung điểm của ND

=>K là tâm đường tròn đường kính ND

ΔNOD vuông tại O

mà OK là đường trung tuyến

nên OK=KN=KD

=>K là tâm đường tròn ngoại tiếp ΔNOD

Xét hình thang ABDN có

K,O lần lượt là trung điểm của ND,AB

=>KO là đường trung bình của hình thang ABDN

=>KO//AN//BD

=>KO⊥AB tại O

Xét (K) có

KO là bán kính

AB⊥KO tại O

Do đó: AB là tiếp tuyến của (K)

=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODN

g:

\(\frac{BA}{AM}=\frac{2\cdot BO}{2\cdot AN}=\frac{BO}{AN}\)

\(BD\cdot AN=R^2\)

=>\(\frac{BD}{R}=\frac{R}{AN}\)

=>\(\frac{BD}{AO}=\frac{BO}{AN}\)

=>\(\frac{BD}{AO}=\frac{BA}{AM}\)

Xét ΔBAD vuông tại B và ΔAMO vuông tại A có

\(\frac{BA}{AM}=\frac{BD}{AO}\)

Do đó: ΔBAD~ΔAMO

=>\(\hat{BAD}=\hat{AMO}\)

\(\hat{BAD}+\hat{MAD}=\hat{BAM}=90^0\)

nên \(\hat{AMO}+\hat{MAD}=90^0\)

=>OM⊥AD tại I

h: xét tứ giác AICM có \(\hat{AIM}=\hat{ACM}=90^0\)

nên AICM là tứ giác nội tiếp đường tròn đường kính AM

mà N là trung điểm của AM

nên A,M,C,I cùng thuộc đường tròn (N)

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Sửa đề: \(BC\cdot MC=AC^2\)

Xét ΔABM vuông tại A có AC là đường cao

nên \(CB\cdot CM=CA^2\)

c: ΔACM vuông tại C

mà CN là đường trung tuyến

nên NA=NC=NM

Xét ΔNAO và ΔNCO có

NA=NC

NO chung

AO=CO

Do đó: ΔNAO=ΔNCO

=>\(\hat{NAO}=\hat{NCO}\)

=>\(\hat{NCO}=90^0\)

=>NC là tiếp tuyến của (O)

d: Xét (O) có

DC,DB là các tiếp tuyến

Do đó: DC=DB và OD là phân giác của góc BOC

OD là phân giác của góc BOC

=>\(\hat{BOC}=2\cdot\hat{COD}\)

ΔNAO=ΔNCO

=>\(\hat{NOA}=\hat{NOC}\)

=>ON là phân giác của góc COA

=>\(\hat{COA}=2\cdot\hat{CON}\)

Ta có: \(\hat{BOC}+\hat{COA}=180^0\) (hai góc kề bù)

=>\(2\left(\hat{CON}+\hat{COD}\right)=180^0\)

=>\(2\cdot\hat{NOD}=180^0\)

=>\(\hat{NOD}=90^0\)

e: Sửa đề: Chứng minh \(AN\cdot BD=R^2\)

Xét ΔOND vuông tại O có OC là đường cao

nên \(CN\cdot CD=OC^2\)

=>\(NA\cdot BD=OC^2=R^2\)

f: Gọi K là trung điểm của ND

=>K là tâm đường tròn đường kính ND

ΔNOD vuông tại O

mà OK là đường trung tuyến

nên OK=KN=KD

=>K là tâm đường tròn ngoại tiếp ΔNOD

Xét hình thang ABDN có

K,O lần lượt là trung điểm của ND,AB

=>KO là đường trung bình của hình thang ABDN

=>KO//AN//BD

=>KO⊥AB tại O

Xét (K) có

KO là bán kính

AB⊥KO tại O

Do đó: AB là tiếp tuyến của (K)

=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODN

g:

\(\frac{BA}{AM}=\frac{2\cdot BO}{2\cdot AN}=\frac{BO}{AN}\)

\(BD\cdot AN=R^2\)

=>\(\frac{BD}{R}=\frac{R}{AN}\)

=>\(\frac{BD}{AO}=\frac{BO}{AN}\)

=>\(\frac{BD}{AO}=\frac{BA}{AM}\)

Xét ΔBAD vuông tại B và ΔAMO vuông tại A có

\(\frac{BA}{AM}=\frac{BD}{AO}\)

Do đó: ΔBAD~ΔAMO

=>\(\hat{BAD}=\hat{AMO}\)

\(\hat{BAD}+\hat{MAD}=\hat{BAM}=90^0\)

nên \(\hat{AMO}+\hat{MAD}=90^0\)

=>OM⊥AD tại I

h: xét tứ giác AICM có \(\hat{AIM}=\hat{ACM}=90^0\)

nên AICM là tứ giác nội tiếp đường tròn đường kính AM

mà N là trung điểm của AM

nên A,M,C,I cùng thuộc đường tròn (N)

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
NV
5 tháng 9

Đề lỗi rồi em, ví dụ câu b, 2 BC.MC AC mũ 2 là gì?

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Sửa đề: \(BC\cdot MC=AC^2\)

Xét ΔABM vuông tại A có AC là đường cao

nên \(CB\cdot CM=CA^2\)

c: ΔACM vuông tại C

mà CN là đường trung tuyến

nên NA=NC=NM

Xét ΔNAO và ΔNCO có

NA=NC

NO chung

AO=CO

Do đó: ΔNAO=ΔNCO

=>\(\hat{NAO}=\hat{NCO}\)

=>\(\hat{NCO}=90^0\)

=>NC là tiếp tuyến của (O)

d: Xét (O) có

DC,DB là các tiếp tuyến

Do đó: DC=DB và OD là phân giác của góc BOC

OD là phân giác của góc BOC

=>\(\hat{BOC}=2\cdot\hat{COD}\)

ΔNAO=ΔNCO

=>\(\hat{NOA}=\hat{NOC}\)

=>ON là phân giác của góc COA

=>\(\hat{COA}=2\cdot\hat{CON}\)

Ta có: \(\hat{BOC}+\hat{COA}=180^0\) (hai góc kề bù)

=>\(2\left(\hat{CON}+\hat{COD}\right)=180^0\)

=>\(2\cdot\hat{NOD}=180^0\)

=>\(\hat{NOD}=90^0\)

e: Sửa đề: Chứng minh \(AN\cdot BD=R^2\)

Xét ΔOND vuông tại O có OC là đường cao

nên \(CN\cdot CD=OC^2\)

=>\(NA\cdot BD=OC^2=R^2\)

f: Gọi K là trung điểm của ND

=>K là tâm đường tròn đường kính ND

ΔNOD vuông tại O

mà OK là đường trung tuyến

nên OK=KN=KD

=>K là tâm đường tròn ngoại tiếp ΔNOD

Xét hình thang ABDN có

K,O lần lượt là trung điểm của ND,AB

=>KO là đường trung bình của hình thang ABDN

=>KO//AN//BD

=>KO⊥AB tại O

Xét (K) có

KO là bán kính

AB⊥KO tại O

Do đó: AB là tiếp tuyến của (K)

=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODN

g:

\(\frac{BA}{AM}=\frac{2\cdot BO}{2\cdot AN}=\frac{BO}{AN}\)

\(BD\cdot AN=R^2\)

=>\(\frac{BD}{R}=\frac{R}{AN}\)

=>\(\frac{BD}{AO}=\frac{BO}{AN}\)

=>\(\frac{BD}{AO}=\frac{BA}{AM}\)

Xét ΔBAD vuông tại B và ΔAMO vuông tại A có

\(\frac{BA}{AM}=\frac{BD}{AO}\)

Do đó: ΔBAD~ΔAMO

=>\(\hat{BAD}=\hat{AMO}\)

\(\hat{BAD}+\hat{MAD}=\hat{BAM}=90^0\)

nên \(\hat{AMO}+\hat{MAD}=90^0\)

=>OM⊥AD tại I

h: xét tứ giác AICM có \(\hat{AIM}=\hat{ACM}=90^0\)

nên AICM là tứ giác nội tiếp đường tròn đường kính AM

mà N là trung điểm của AM

nên A,M,C,I cùng thuộc đường tròn (N)

31 tháng 7 2016

vẽ hình đi

1 tháng 8 2016

undefined