Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi D là tiếp điểm của đường tròn (K) trên BC . ta có DB = BE ; CD = CF (tính chất 2 tiếp tuyến cắt nhau)
\(\Rightarrow\) AE = AB + BE = c + BD
AF = AC + CF = b + CD
\(\Rightarrow\) AE + AF = b + c + (BD + CD)
= a + b + c
ta lại có AE = AF (tính chất 2 tiếp tuyến cắt nhau)
\(\Rightarrow\) AE = AF = \(\dfrac{a+b+c}{2}\) (đpcm)
b) BE = AE - AB = \(\dfrac{a+b+c}{2}\) - c = \(\dfrac{a+b-c}{2}\) (đpcm)
c) CF = AF - AC = \(\dfrac{a+b+c}{2}\) -b = \(\dfrac{a+c-b}{2}\) (đpcm)
Tổng quát cho câu 2 là định lí Ptolemy, như sau: Cho \(ABCD\) nội tiếp bất kì. Khi đó \(AC.BD=AB.CD+AD.BC\).
A B C D E
CM: Vẽ \(E\in AC\) sao cho \(\widehat{ABD}=\widehat{EBC}\).
Khi đó có hai tam giác sau đồng dạng \(ABD\) và \(EBC\), \(ABE\) và \(DBC\).
Suy ra tỉ lệ cạnh: \(\frac{AD}{EC}=\frac{BD}{BC}\) và \(\frac{AB}{DB}=\frac{AE}{DC}\).
Hay \(AD.BC=BD.EC\) và \(AB.DC=AE.DB\)
Cộng lại: \(AB.CD+AD.BC=BD\left(AE+EC\right)=AC.BD\)
Gọi đường tròn tâm O bán kính r nội tiếp trong ∆ABC vuông ở A. (O) tiếp xúc với AB, BC, CA tại M, N, P.
=> AM = AP; BM = BN; CN = CP
Vì ABC vuông tại A
=> AM = AP = r
=> c + b - a = AB + AC - BC
= AM + MB + AP + PC - BN - NC
= AM + AP = 2r
=> r = (b + c - a)/2
Ta có: r = (b + c - a)/2. Thế vào bài toán ta được
r/a = (b + c - a)/(2a)
Từ đây ta thấy để chứng minh bài toán là đúng thì ta chỉ cần chứng minh
b/a + c/a <= √2
Ta có: b2 + c2 = a2
<=> (b/a)^2 + (c/a)^2 = 1
=> (b/a + c/a)^2 <= 2[(b/a)^2 + (c/a)^2] = 2
=> b/a + c/a <= √2
PS: Không có máy tính nên làm vậy nha. Ráng đọc nha e :D
1. Ta có:
ED,EAED,EA là tiếp tuyến của (O)
→ED⊥OD,EA⊥OA⇒ˆADE=ˆOAE=90o→ED⊥OD,EA⊥OA⇒ADE^=OAE^=90o
EDOAEDOA có ˆADE+ˆOAE=180oADE^+OAE^=180o
⇒EDOA⇒EDOA nội tiếp đường tròn đường kính (OE)
→ˆDOA+ˆDEA=180o→DOA^+DEA^=180o
Mà ABCDABCD là hình thang cân
→ˆDMA=ˆDBA+ˆCAB=2ˆDBA=ˆDOA→DMA^=DBA^+CAB^=2DBA^=DOA^
→ˆDMA+ˆAED=180o→AEDM→DMA^+AED^=180o→AEDM nội tiếp được trong một đường tròn
2. Từ câu 1
→ˆEMA=ˆEDA=ˆDBA=ˆCAB→EMA^=EDA^=DBA^=CAB^
Vì EDED là tiếp tuyến của (O),ABCDABCD là hình thang cân
→EM//AB→EM//AB
3. Ta có:
EM//AB→HK//AB→HMAB=DMDB=CMCA=MKABEM//AB→HK//AB→HMAB=DMDB=CMCA=MKAB
→MH=MK→M→MH=MK→M là trung điểm HK
Lời giải:
Vì $abc=1$ nên tồn tại $x,y,z$ sao cho : \((a,b,c)=\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)\)
Khi đó:
\(\text{VT}=\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}+\frac{1}{\sqrt{\frac{y}{x}+\frac{y}{z}+2}}+\frac{1}{\sqrt{\frac{z}{y}+\frac{z}{x}+2}}=\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}+\frac{\sqrt{xz}}{\sqrt{xy+yz+2xz}}+\frac{\sqrt{xy}}{\sqrt{xz+yz+2xy}}\)
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}^2\leq (1+1+1)\left(\frac{yz}{xy+xz+2yz}+\frac{xz}{xy+yz+2xz}+\frac{xy}{xz+yz+2xy}\right)\)
\(\leq 3\left[\frac{yz}{4}\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)+\frac{xz}{4}\left(\frac{1}{xy+xz}+\frac{1}{xz+yz}\right)+\frac{xy}{4}\left(\frac{1}{xz+xy}+\frac{1}{yz+xy}\right)\right]\)
hay \(\text{VT}^2\leq \frac{3}{4}.\left(\frac{xy+yz}{xy+yz}+\frac{xy+xz}{xy+xz}+\frac{yz+xz}{yz+xz}\right)=\frac{9}{4}\)
\(\Rightarrow \text{VT}\leq \frac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$
A B C D E F I S A B C D E H.b
Dễ dàng chứng minh IC,IA,IB lần lượt vuông góc với DE,EF,DF
nên \(DE=2DS=2CD.\sin\dfrac{C}{2}=\left(a+b-c\right).\sin\dfrac{C}{2}\)
tương tự với EF và DF,ta cần chứng minh :
\(\sum\dfrac{\left(a+b-c\right).\sin\dfrac{C}{2}}{\sqrt{ab}}\le\dfrac{3}{2}\)
có bổ đề :\(\sin\dfrac{A}{2}\le\dfrac{a}{b+c}\) ( H.b)( tự chứng minh)
nên BĐT cần chứng minh : \(\sum\dfrac{\left(a+b-c\right).c}{\left(a+b\right)\sqrt{ab}}\le\dfrac{3}{2}\)
AM-GM: \(\left(a+b\right)\sqrt{ab}\ge2\sqrt{ab}.\sqrt{ab}=2ab\)
Tương tự: \(VT\le\sum\dfrac{\left(a+b-c\right)c}{2ab}=\dfrac{\sum ab\left(a+b\right)-\sum a^3}{2abc}\)
Áp dụng BĐT schur: \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\le a^3+b^3+c^3+3abc\)
( cm : \(\Leftrightarrow\sum a\left(a-b\right)\left(a-c\right)\ge0\) và ta có thể giả sử \(a\ge b\ge c\)...Google để chi tiết )
\(\Rightarrow VT\le\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
Dấu = xảy ra khi a=b=c.( a,b,c>0)
P/s: để ý rằng \(\sum\dfrac{\left(a+b-c\right)c^2}{2abc}=\sum\dfrac{\left(b^2+c^2-a^2\right)a}{2abc}=\sum\dfrac{b^2+c^2-a^2}{2bc}=\sum\cos A\)