Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bo de \(AD.AE=AC^2\) (ban tu chung minh nha , cu tam giac dong dang la ra )
xet \(AD+AE=AD+DH+AD+HE=AH+AD+DH=2AH\)
=> \(\frac{1}{AD}+\frac{1}{AE}=\frac{AD+AE}{AD.AE}=\frac{2AH}{AC^2}\) (1)
ta phai cm \(\frac{2AH}{AC^2}=\frac{2}{AK}\Leftrightarrow AH.AK=AC^2\) (2)
do H la trung diem DE => \(OH\perp DE=>\widehat{ABO}=\widehat{AHO}=\widehat{ACO}=90^0\)
=> A,B,O,H,C thuoc duong tron duong kinh AO
=> \(\widehat{AHC}=\widehat{ABC}\left(\frac{1}{2}sd\widebat{AC}\right)\)
ma \(\widehat{ABC}=\widehat{ACK}\) tinh chat 2 tiep tuyen cat nhau
=> \(\widehat{ACK}=\widehat{AHC}\) lai co \(\widehat{CAK}=\widehat{HAC}\)
=> \(\Delta AKC\approx\Delta ACH\left(g-g\right)\)
=> \(\frac{AK}{AC}=\frac{AC}{AH}\Leftrightarrow AK.AH=AC^2\) (3)
Tu (1),(2),(3) ta co dpcm
a/
HC=HD (bán kính vuông góc với dây cung thì chia đôi dây cung)
HA=HE (đề bài)
=> ACED là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)
Mà AE vuông góc CD
=> ACED là hình thoi (Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi)
b/
Vì ACDE là hình thoi => AD=ED => tg ADE cân tại D
Mà DH vuông góc AE
=> DH là đường cao đồng thời là đường phân giác của ^ADE => ^ADC=^CDI
Ta có \(sđ\widehat{ADC}=\frac{1}{2}sđ\widebat{AC}\)(góc nội tiếp đường tròn (O))
\(sđ\widehat{ABC}=\frac{1}{2}sđ\widebat{AC}\) (góc nội tiếp đường tròn (O))
=> ^CDI=^ABC
Xét tg vuông BCH có
^ABC+^DCB=90 => ^CDI+^DCB=90 => ^CID=90=> ^EIB=90
=> I nhìn EB dưới 1 góc vuông => I thuộc đường trong đường kính EB tâm O' là trung điểm của EB
c/
Xét tg vuông CDI có \(IH=CH=DH=\frac{CD}{2}\) (trung tuyến thuộc cạnh huyền)
=> tg DHI cân tại H => ^CDI=^DIH (1)
Xét tg vuông BIE có \(IO'=EO'=BO'\) (trung tuyến thuộc cạnh huyền)
=> tg BIO' cân tại O' => ^ABC=^BIO' (2)
Mà ^CDI=^ABC (cmt) (3)
Từ (1) (2) (3) => ^DIH=^BIO'
Mà ^BIO'+^O'IE=90 => ^DIH+^O'IE=^HIO'=90 => HI vuông góc IO' => HI là tiếp tuyến của đường tròn (O') tại I
d/
Ta có OA=5 => AB=10
EO'=3=> EB=6
=> AE=AB-EB=10-6=4 => HE=2
=> HO'=HE+EO'=2+3=5
Mà IO'=EO' (cmt)=3
Xét tg vuông HIO' có
\(HI^2=HO'^2-IO'^2=5^2-3^2=16\Rightarrow HI=4\)