Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp
==> 4 điểm B,E,F,C cùng thuộc một đường tròn.
c, Gọi K là giao điểm của DG và IF
Vì D là giao điểm của 2 tiếp tuyến
-=>\(AC\perp OD\)
=>ADO=CAB=FAE
=> tam giác ADO đồng dạng tam giác EAF
=> \(\frac{AD}{EA}=\frac{AO}{EF}\)
=> \(\frac{AD}{2IE}=\frac{\frac{1}{2}AB}{EF}\)=> \(\frac{AD}{IE}=\frac{AB}{EF}\)
=> Tam giác ADB đồng dạng tam giác EIF( 2 cạnh góc vuông )
=> ABD=IFE
=> tứ giác KBEF nội tiếp
=> FBK=90độ
=> \(GK\perp IF\)
Lại có \(IE\perp FG\),IE giao GK tại B
=> B là trực tâm của tam giác IFG
MÀ B cố định
=> ĐPCM
Cho △ABC nhọn (AB<AC) nội tiếp (O), 2 đường cao BD và CE cắt nhau tại H
a/ Chứng minh : B,C,D,E cùng nằm trên một đường tròn .Xác định tâm M của đường tròn này.
b/ Chứng minh : OM // AH
c/ Chứng minh : AB.AE = AC.AD
d/ Gọi K là điểm đối xứng của H qua M .