K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2022

Ta có hình vẽ như sau: 

A B O C E D F

b) Vì \(\widehat{BDA}\)  nội tiếp của (O) chắn \(\stackrel\frown{AB}\) (nửa đường tròn) nên \(\widehat{BDA}=90^o\) ⇒ BD ⊥ AD

Vì ▲ABF vuông tại B có BD là đường cao nên ta có hệ thức sau:

\(BF^2=AF\cdot FD\) (điều phải chứng minh)

➤Có điều phải chứng minh

24 tháng 3 2022

Thế còn câu a là câu nâng cao.

Tứ giác CEFD không có góc nào vuông cả.

15 tháng 2 2020

Hình tự vẽ nha

1, Ta có: MA = MC (t/c 2 tt cắt nhau)

              OA = OC (t/c 2 tt cắt nhau)

=> OM là đường trung trực của AC

=> OM _|_ AC hay \(\widehat{OEC}=90^o\)

Có:  \(\widehat{OBD}=90^o\) (t/c tt của đường tròn)

XÉt tứ giác OBDE có: \(\widehat{OEC}+\widehat{OBD}=90^o+90^o=180^o\)

Mà 2 góc này ở vị trí đối diện

=> tứ giác OBDE nội tiếp (đpcm)

2, Xét t/g ABC có: góc ACB là góc nội tiếp chắn nửa đường tròn

=> \(\widehat{ACB}=90^o\) hay BC _|_ AD

Áp dụng hệ thức b2=a.b' vào t/g ABD vuông tại B, đường cao BC có: \(AC.AD=AB^2=\left(2R\right)^2=4R^2\) (vì AB là đường kính) (đpcm)

3, Gọi K là trung điểm của MF (K thuộc MF) => KM=KF

Ta có: AM _|_ AB (t/c tt) ; BF _|_ AB (t/c tt)                  (1)

=> AM // BF => tứ giác AMBF là hình thang

Xét hình thang AMBF có:  KM = KF ; OA = OB (gt)

=> OK là đường trung bình của hình thang AMBF

=> OK // AM // BF mà AM _|_ AB (cmt)

=> OK _|_ AB (1)

Lại có: t/g MOF nội tiếp đường tròn => O thuộc tròn ngoại tiếp t/g MOF (2)

Từ (1) và (2) => đpcm

19 tháng 12 2017

Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo tại đây nhé.

27 tháng 3 2020

sai bét tè lè nhé lún

10 tháng 3 2019

Giải hộ mình với 

29 tháng 3 2018

dam nhau a minh anh can het

2 tháng 4 2018

kết qủa là gì