Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔODB có OD=OB(gt)
nên ΔODB cân tại O(Định nghĩa tam giác cân)
Xét ΔOBD cân tại O có \(\widehat{DOB}=60^0\left(sđ\stackrel\frown{BD}=60^0\right)\)
nên ΔOBD đều(Dấu hiệu nhận biết tam giác đều)
\(\Leftrightarrow\widehat{OBD}=60^0\)(Số đo của một góc trong ΔOBD đều)
\(\Leftrightarrow\widehat{ABM}=60^0\)
Ta có: ΔBAM vuông tại A(gt)
nên \(\widehat{ABM}+\widehat{AMB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{AMB}+60^0=90^0\)
hay \(\widehat{AMB}=30^0\)
Vậy: \(\widehat{AMB}=30^0\)
a: ΔOAB cân tại O
mà OC là đường cao
nên OC là phân giác của góc AOB
Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
=>\(\widehat{OAC}=\widehat{OBC}=90^0\)
b: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>AB\(\perp\)BD
Ta có: AB\(\perp\)BD
AB\(\perp\)OC
Do đó: BD//OC
a: Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
ΔBAC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(BA=R\sqrt{3}\)
Xét ΔBAC vuông tại B có
\(sinBAC=\dfrac{BC}{AC}=\dfrac{1}{2}\)
nên \(\widehat{BAC}=30^0\)
b: ΔOAB cân tại O
mà OH là đường cao
nên OH là phân giác của \(\widehat{AOB}\)
Xét ΔOAD và ΔOBD có
OA=OB
\(\widehat{AOD}=\widehat{BOD}\)
OD chung
Do đó: ΔOAD=ΔOBD
=>\(\widehat{OAD}=\widehat{OBD}=90^0\)
=>DB là tiếp tuyến của (O)
c: ΔABC vuông tại B
=>\(\widehat{BAC}+\widehat{BCA}=90^0\)
=>\(\widehat{BCA}=90^0-30^0=60^0\)
Xét ΔOBC có OB=OC và \(\widehat{BCO}=60^0\)
nên ΔOBC đều
=>ΔBOC cân tại B
ΔBOC cân tại B
mà BM là đường cao
nên M là trung điểm của OC
ΔOBE cân tại O
mà OM là đường cao
nên M là trung điểm của BE
Xét tứ giác OBCE có
M là trung điểm chung của OC và BE
nên OBCE là hình bình hành
Hình bình hành OBCE có OB=OE
nên OBCE là hình thoi
a: Xét (O) có
ΔBAC nội tiếp
AC là đường kính
Do đó: ΔBAC vuông tại B
Xét (O) có
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
Do đó: \(\widehat{BAC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BC}=\dfrac{1}{2}\cdot60^0=30^0\)
Gọi H là giao điểm của BD với AC
BD\(\perp\)AC nên BD\(\perp\)AC tại H
ΔOBD cân tại O
mà OH là đường cao
nên H là trung điểm của BD
Xét ΔCBD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCBD cân tại C
=>CB=CD
Xét ΔCOD và ΔCOB có
CD=CB
OD=OB
CO chung
Do đó: ΔCOD=ΔCOB
=>\(\widehat{COD}=\widehat{COB}\)
=>\(sđ\stackrel\frown{CB}=sđ\stackrel\frown{CD}=60^0\)
Xét ΔBAC vuông tại B có \(\widehat{BAC}+\widehat{BCA}=90^0\)
=>\(\widehat{BCA}+30^0=90^0\)
=>\(\widehat{BCA}=60^0\)
Xét (O) có
\(\widehat{BCA}\) là góc nội tiếp chắn cung AB
Do đó: \(\widehat{BCA}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AB}\)
=>\(sđ\stackrel\frown{AB}=2\cdot\widehat{BCA}=120^0\)
DF//AC
DB\(\perp\)AC
Do đó: DF\(\perp\)DB
=>ΔDFB vuông tại D
ΔDFB vuông tại D
nên ΔDFB nội tiếp đường tròn đường kính BF
mà ΔDFB nội tiếp (O)
nên O là trung điểm của BF
=>OA//DF
=>\(\widehat{BFD}=\widehat{BOH}=\widehat{BOC}\)(hai góc đồng vị)
=>\(\widehat{BFD}=60^0\)
ΔBDF vuông tại D
=>\(\widehat{BFD}+\widehat{FBD}=90^0\)
=>\(\widehat{FBD}+60^0=90^0\)
=>\(\widehat{FBD}=30^0\)
Xét (O) có
\(\widehat{FBD}\) là góc nội tiếp chắn cung FD
Do đó: \(\widehat{FBD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{FD}\)
=>\(sđ\stackrel\frown{FD}=2\cdot\widehat{FBD}=2\cdot\)30=60 độ
Bài 7:
a: Xét ΔOAM vuông tại A có
\(\cos\widehat{AOM}=\dfrac{OA}{OM}=\dfrac{1}{2}\)
nên \(\widehat{AOM}=60^0\)
b: Xét tứ giác OAMB có
\(\widehat{OAM}+\widehat{OBM}=180^0\)
Do đó: OAMB là tứ giác nội tiếp
Suy ra: \(\widehat{AOB}=180^0-36^0=144^0\)