Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc CMO+góc CNO=180 độ
=>CMON nội tiếp
b: Xét ΔCMA và ΔCBM có
góc CMA=góc CBM
góc MCA chung
=>ΔCMA đồng dạng với ΔCBM
=>CM^2=CA*CB
Đường tròn c: Đường tròn qua B với tâm O Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [O, C] Đoạn thẳng p: Đoạn thẳng [F, C] Đoạn thẳng q: Đoạn thẳng [C, H] Đoạn thẳng r: Đoạn thẳng [B, E] Đoạn thẳng s: Đoạn thẳng [C, E] Đoạn thẳng t: Đoạn thẳng [A, F] O = (1.42, 2.28) O = (1.42, 2.28) O = (1.42, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l
a) Ta thấy \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn AB. Vậy nên \(\widehat{ACB}=\frac{sđ\widebat{AB}}{2}=\frac{180^o}{2}=90^o\)
Vậy tam giác ABC là tam giác vuông tại C.
b) Do M là trung điểm của dây cung AC. Theo tính chất đường kính, dây cung, ta có \(OM\perp AC\)
Xét tứ giác OMCH có \(\widehat{OMC}=\widehat{OHC}=90^o\) nên OMCH là tứ giác nội tiếp.
Đường tròn ngoại tiếp tứ giác trên có đường kinh là OC nên tâm I của đường tròn là trung điểm OC.
c) Xét tam giác vuông ABE có đường cao BC. Áp dụng hệ thức lượng trong tam giác ta có:
\(EC.EA=BE^2\)
Xét tam giác vuông BCE, theo định lý Pi-ta-go, ta có:
\(BE^2=OE^2-OB^2=OE^2-R^2\)
Vậy ta có ngay \(EC.EA=OE^2-R^2\)
d) Ta thấy CH // BE nên áp dụng định lý Talet ta có:
\(\frac{NH}{BF}=\frac{NC}{FE}\left(=\frac{AH}{AB}\right)\)
Lại có NH = HC nên BF = FE
Xét tam giác vuông BCE có CF là trung tuyến ứng vớ cạnh huyền nên FC = FB.
Vậy thì \(\Delta OCF=\Delta OBF\left(c-c-c\right)\Rightarrow\widehat{OCF}=\widehat{OBF}=90^o\)
hay CF là tiếp tuyến của đường tròn (I)
a: Ta có: ΔOAB cân tại O
mà OE là đường cao
nên OE\(\perp\)AB
Xét tứ giác OECN có \(\widehat{OEC}+\widehat{ONC}=90^0+90^0=180^0\)
nên OECN là tứ giác nội tiếp
=>O,E,C,N cùng thuộc một đường tròn
b: Xét (O) có
\(\widehat{CNA}\) là góc tạo bởi tiếp tuyến NC và dây cung NA
\(\widehat{ABN}\) là góc nội tiếp chắn cung AN
Do đó: \(\widehat{CNA}=\widehat{ABN}\)
Xét ΔCNA và ΔCBN có
\(\widehat{CNA}=\widehat{CBN}\)
\(\widehat{NCA}\) chung
Do đó: ΔCNA~ΔCBN
=>\(\dfrac{CN}{CB}=\dfrac{CA}{CN}\)
=>\(CN^2=CA\cdot CB\)
c: Xét ΔOCN vuông tại N có NH là đường cao
nên \(CH\cdot CO=CN^2\)
=>\(CH\cdot CO=CA\cdot CB\)
=>\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)
Xét ΔCHA và ΔCBO có
\(\dfrac{CH}{CB}=\dfrac{CA}{CO}\)
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCBO
=>\(\widehat{CHA}=\widehat{CBO}\)
mà \(\widehat{CBO}=\widehat{OAB}\)(ΔOAB cân tại O)
nên \(\widehat{CHA}=\widehat{OAB}\)