Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AB và AC là tiếp tuyến của (O;R) =>AB⊥OB và AC⊥OC =>B và C nhìn OA góc 90° =>B và C cùng nằm trên đường tròn đường kính AO hay A,B,C,) cùng nằm trên đường tròn đường kính AO.
Hai △AOB và △AOC là 2 tam giác vuông có chung cạnh huyền OA và 2 cạnh góc vuông OB=OC (cùng = R) => △AOB = △AOC =>OA là phân giác ∠BOC mà △BOC cân tại B =>OA là đường trung trực của BC.
b)xét △ODB và △OBA có 2 góc vuông tại D và B, chung góc nhọn tại O =>△ODB ∼ △OBA =>OD/OB=OB/OA =>OA.OD=OB²=R².
Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo tại đây nhé.
OMABICDEF
a) Ta thấy OAM và OBM là các tam giác vuông có chung cạnh huyền OM nên A, O, B, M cùng thuộc đường tròn đường kính OM.
b) Theo tính chất hai tiếp tuyến cắt nhau thì MA = MB và MI là tia phân giác góc AMB.
Vậy thì tam giác MAB cân tại M, có phân giác MI đồng thời là đường cao.
Vậy nên \(OM\perp AB\) tại I.
c) Do D thuộc đường tròn (O) nên OC = OB = OD.
Suy ra tam giác BDC vuông tại D.
Xét tam giác vuông CBM, đường cao BD, ta có: \(MD.MC=BM^2\) (Hệ thức lượng)
Xét tam giác vuông OBM, đường cao BI, ta có: \(MI.MO=BM^2\) (Hệ thức lượng)
Vậy nên MD.MC = MI.MO
d) Ta thấy CEF và CAF là các tam giác vuông có chung cạnh huyền CF nên FAEC nội tiếp đường tròn đường kính CF.
\(\Rightarrow\widehat{FCE}=\widehat{EAB}\) (Hai góc nội tiếp cùng chắn cung CO)
Lại có O,E, A, M, B cùng thuộc đường tròn đường kính OM nên \(\widehat{EAB}=\widehat{EMB}\) (Hai góc nội tiếp cùng chắn cung EB)
\(\Rightarrow\widehat{FCE}=\widehat{EMB}\)
Ta có \(\widehat{EMB}+\widehat{ECB}=90^o\Rightarrow\widehat{FCE}+\widehat{ECB}=90^o\)
\(\Rightarrow\widehat{FCB}=90^o\)
Vậy FC là tiếp tuyến của đường tròn (O).
Cô hướng dẫn nhé.
a) Theo tính chất của hai tiếp tuyến cắt nhau, ta có \(OA\perp BC\)
Xét tam giác vuông OBA có đường cao BH, áp dụng hệ thức lượng trong tam giác vuông ta có:
\(OH.OA=OB^2=R^2\)
b) Ta thấy rằng \(\widehat{BCD}\) chắn nửa đường tròn nên \(\widehat{BCD}=90^o\)
\(\Rightarrow DC\perp BC\)
Theo tính chất từ vuông góc tới song song ta có OA // CD
Ta cũng thấy ngay \(\Delta OCA\sim\Delta DKC\left(g-g\right)\Rightarrow\frac{AO}{CD}=\frac{AC}{CK}\Rightarrow AC.CD=CK.AO\)
có góc AQB= 90 độ( góc nội tiếp chắn nửa đường tròn tâm O) Hay góc AQP=90 độ => góc QAP= 90 độ- góc QPA=90 độ-1/2sđ cung AP
có góc APC= 90 độ( góc nội tiếp chắn nửa đường tròn tâm O1)=> góc PAC=90 độ - góc PCA=90 độ - 1/2sđ cung AP
Vì vậy góc QAP= góc PAC hay AP là tia phân giác của góc QAB
Ta có: góc BQA =90o (góc nội tiếp chắn nửa (O))
Xét Δ PQA vuông tại Q có: góc QAP + góc QPA =90o ⇒ góc QAP=90o- góc QPA
Mà góc QPA =1/2 sđ cung PA ( góc QPA là góc tạo bởi tia tiếp tuyến cà dây cung chắn cung AP của (O1))
⇒góc QAP=90o- 1/2 sđ cung PA (1)
Xét ΔCPA vuông tại P ( vì góc CPA là góc nội tiếp chắn nửa (O1)) có
góc PCA + góc PAC =90o⇒góc PAC =90o-góc PCA
mà góc PCA =1/2 sđ cung PA ( góc nội tiếp chắn cung PA )
⇒góc PAC= 90o-1/2 sđ cung PA (2)
Từ (1) và (2) ⇒ góc QAP=góc PAC ⇒ AP là tia phân giác của góc QAB
A B O C H D E F
a) Do C thuộc đường tròn nên \(\widehat{ACB}=90^o\)
Áp dụng định lý Pi-ta-go: \(BC=\sqrt{10^2-6^2}=8\left(cm\right)\)
Xét tam giác vuông ACB, đường cao CH. Áp dụng hệ thức lượng trong tam giác, ta có:
\(CH.AB=CA.BC\Rightarrow CH=\frac{6.8}{10}=4,8\left(cm\right)\)
Ta thấy \(sin\widehat{ABC}=\frac{AC}{AB}=\frac{6}{10}\Rightarrow\widehat{ABC}\approx36^o52'\)
b) Theo tính chất hai tiếp tuyến cắt nhau, ta có: \(DC=DB\) và DO là phân giác góc BDC.
Vậy thì DO cũng là đường trung trực của BC hay \(DO\perp BC.\)
c) Xét tam giác vuông ABC, đường cao CH, ta có : \(AH.AB=AC^2\) (Hệ thức lượng)
Xét tam giác vuông AEB, đường cao AC, ta có: \(AC^2=EC.CB\) (Hệ thức lượng)
Vậy nên \(AH.AB=EC.CB\)
d) Ta thấy HC // AE (Cùng vuông góc với AB)
Áp dụng Ta let ta có: \(\frac{IH}{AF}=\frac{IC}{EF}\left(=\frac{IB}{FB}\right)\)
mà IH = IC nên AF = FE.
Xét tam giác vuông ACE có F là trung điểm cạnh huyền nên FA = FE = FC.
Xét tam giác FAO và FCO có: FO chung, FA = FC, AO = CO nên \(\Delta FAO=\Delta FCO\left(c-c-c\right)\)
\(\Rightarrow\widehat{FCO}=\widehat{FAO}=90^o\)
Vậy nen FO là tiếp tuyến của đường tròn.
O A C B D H I M
a) Tam giác COD và HOD là các tam giác vuông có chung cạnh huyền OD nên O, H, D, C cùng thuộc đường tròn đường kính OD.
b) Theo tính chất hai tiếp tuyến cắt nhau, ta có \(OD\perp BC\)
Tam giác DIA và DHA là hai tam giác vuông có chung cạnh AD nên DIHA là tứ giác nội tiếp.
Vậy thì \(\widehat{IDA}=\widehat{IHO}\)
Từ đó ta có \(\Delta IOH\sim\Delta AOD\left(g-g\right)\Rightarrow\frac{OI}{OA}=\frac{OH}{OD}\Rightarrow OH.OA=OI.OD\)
c) Xét tam giác vuông DBO, chiều cao BI, ta có:
\(OI.OD=OB^2\) (Hệ thức lượng)
Mà \(OB^2=OM^2;OI.OD=OH.OA\Rightarrow OM^2=OH.OA\)
\(\Rightarrow\Delta OHM\sim\Delta OMA\left(c-g-c\right)\Rightarrow\widehat{OMA}=\widehat{OHM}=90^o\)
Vậy AM là tiếp tuyến của đường tròn (O).
a) Vì AH, HB, AB đều là các đường kính của các nửa đường tròn (O1) , (O2) và (O) nên tứ giác MPHQ có ba góc P, Q, M vuông. Vì vậy nó là hình chữ nhật.
Từ đó, ta có HM = PQ.
b) Vì MHPQ là hình chữ nhật nên \widehat{MPQ}=\widehat{MHQ}=\widehat{MBH}\left(=\dfrac{\stackrel\frown{HQ}}{2}\right)MPQ=MHQ=MBH(=2HQ⌢), do đó APQB là tứ giác nội tiếp.
c) Ta có \widehat{O_1PA}=\widehat{PAO_1}=90^o-\widehat{HMP}=90^o-\widehat{MPQ}O1PA=PAO1=90o−HMP=90o−MPQ
\Rightarrow\widehat{O_1PA}+\widehat{MPQ}=90^o\Rightarrow\widehat{O_1PQ}=90^o⇒O1PA+MPQ=90o⇒O1PQ=90o nên PQ tiếp xúc nửa đường tròn (O1) tại P.
Tương tự , PQ tiếp xúc (O2) tại Q hay PQ là tiếp tuyến chung của hai nửa đường tròn (O1) và (O2)
Bạn có thể tham khảo ở đây :
Câu hỏi của Anh Bên - Toán lớp 9 - Học toán với OnlineMath